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Abstract

When testing for the uniformity of directions, most classical approaches fall within the class
of Sobolev tests. In this work, we propose generalizations of Sobolev tests via two new families
of uniformity tests based on U - and V -statistics featuring kernels of arbitrary degree m that
capture interactions among m-tuples of observations. Our tests encompass the classical Sobolev
tests as a special case when m = 2. We demonstrate that the computation of these new V -
statistics remains tractable even for large degrees and sample sizes, and we provide closed-form
expressions for circular m-points test statistics. We investigate the asymptotic behavior of our
m-points statistics under the null hypothesis and obtain non-standard results involving random
Hermite polynomials. We also derive their asymptotic properties under both fixed and local
alternatives. Through simulations, we show that tests with m > 2 yield important gains in
power across several scenarios compared to classical Sobolev tests. Furthermore, we investigate
the impact of m on the rotational invariance and the effect of invariantization in the asymptotic
null distributions.
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1 Introduction

Directional statistics is concerned with data represented as directions, axes, or points on manifolds
such as circles and spheres. It has broad applications across disciplines ranging from geology and
meteorology to medicine and neuroscience. For a comprehensive overview of directional statistics,
Mardia and Jupp (1999) offers a thorough introduction to classical methods, while Ley and Verde-
bout (2017) presents several modern methods. More recent developments and trends are reviewed
in Pewsey and García-Portugués (2021).

Arguably, the problem of testing uniformity is fundamental in directional statistics and can be
traced back to Bernoulli (1735), who explored the physical causes behind the inclinations of plane-
tary orbits relative to the Sun’s equatorial plane. This testing problem is straightforward to state:
given a sample of random vectors X1, . . . ,Xn ∼ P on the hypersphere Sq := {x ∈ Rq+1 : x′x = 1}
of Rq+1, with q ≥ 1, the goal is to test H0 : P = νq against H1 : P ̸= νq, where νq denotes the
uniform distribution on Sq. This problem has been extensively studied in the literature. Notably,
the elegant contributions of Beran (1968) and Giné (1975), who introduced 9. This class encom-
passes classical tests such as those by Rayleigh (1919), Bingham (1974), and Watson (1961). Recent
Sobolev tests have focused on two main directions: improving detection power under multimodal
alternatives, as in Pycke (2010) and Jammalamadaka et al (2020), and in Fernández-de-Marcos and
García-Portugués (2023), who also addressed a second direction—data-driven tests—by proposing
parameter-dependent tests whose parameters are chosen via cross-validation. In this second direc-
tion, Jupp (2008) introduced data-driven Sobolev tests with automatic truncation of the kernel.

Alongside Sobolev tests, another broad approach is projection-based tests. This approach reduces
the problem to goodness-of-fit testing on R by projecting the sample. It includes the works of Cuesta-
Albertos et al. (2009), proposing a Kolmogorov–Smirnov type test; García-Portugués et al. (2023),
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introducing a class of tests based on projection-integrated norms, extending the Watson (1961)
test to q > 1 and proposing an Anderson–Darling test; and Borodavka and Ebner (2023), building
another class of tests based on the powers of maximal projections.

Other recent contributions to testing uniformity have explored high-dimensional settings, such as
Cutting et al. (2017), who studied local likelihood ratios, and Cai and Jiang (2012), who constructed
a test based on the coherence of a random matrix; and novel methodologies, such as Hallin et al
(2024), who employed optimal transport to build tests. See also the references therein. A review of
uniformity testing is provided in García-Portugués and Verdebout (2018).

In the present work, we construct a class of m-points tests that generalizes Sobolev tests. As
later seen, these tests achieve higher power than classical Sobolev tests against certain deviations
from uniformity. To motivate the m-points tests construction, we begin with an overview of Sobolev
tests. Sobolev tests reject the null hypothesis for large values of V -statistics defined as

S
(n)
ϕ :=

1

n

n∑
i,j=1

∞∑
k=1

bq,k(ϕ)hq,k(X
′
iXj), where hq,k(x) :=

{
cos
(
k cos−1 (x)

)
, q = 1,

C
(q−1)/2
k (x), q > 1,

(1)

and Cλ
p denotes the pth Gegenbauer polynomial of order λ. Gegenbauer polynomials Cλ

p are orthogo-
nal polynomials on the interval [−1, 1] with respect to the weight function
t 7→ (1 − t2)λ−1/2. Therefore, the coefficients bq,k(ϕ) in (1) can be seen as the projections of a
kernel ϕ : [−1, 1] → R onto the orthonormal basis {hq,k}∞k=1, that is,

bq,k(ϕ) :=
1

cq,k

∫ 1

−1
ϕ(t)hq,k(t) (1− t2)(q−2)/2 dt, (2)

where the constant cq,k is defined as cq,k :=
ωq

ωq−1
a−1
q,kC

(q−1)/2
k (1) for q > 1, and c1,k := a−1

1,k (1 + δk0)π
for q = 1, where δkℓ is the usual Kronecker delta. Before, we used

aq,k := 2 · 1{q=1} + (1 + 2k/(q − 1)) · 1{q>1},

with 1 denoting the indicator function.
Some assumptions on the kernel ϕ seem natural:

(c1 ) ϕ ∈ L2
q [−1, 1], where L2

q [−1, 1] is the space of square integrable functions with respect to the
weight t 7→ (1− t2)(q−2)/2.

(c2 )
∑∞

k=1 |wk| dq,k <∞, where wk := a−1
q,kbk,q(ϕ) and dq,k :=

(
q+k
k

)
−
(
q+k−2
k−2

)
.

Condition (c1 ) ensures a finite variance for S(n)
ϕ under H0, while condition (c2 ) guarantees that the

statistic S(n)
ϕ is well-defined. For q > 1, this follows from

∞∑
k=1

∣∣bq,k(ϕ)C(q−1)/2
k (t)

∣∣ ≤ ∞∑
k=1

|wk| aq,k C
(q−1)/2
k (1) =

∞∑
k=1

|wk| dq,k <∞,

as condition (c2 ) guarantees the (uniform on [−1, 1]) convergence of
∑∞

k=1 bq,k(ϕ)hq,k(t). While
condition (c2 ) is necessary for V -statistics, it is not required for U -statistics, which exclude diagonal
terms (i = j) and thus permit “extreme” kernels that do not satisfy (c2 ), as the test statistic
introduced in Fernández-de-Marcos and García-Portugués (2024) demonstrates.

From (1), it is clear that the kernel ϕ characterizes the behavior of S(n)
ϕ by weighting the pairwise

distance between observations, through the X′
iXj ’s. Typically, ϕ is chosen to emphasize proximity,

with higher values as X′
iXj → 1, since clustering structures are considered as strong evidence against

uniformity. More generally, ϕ can be seen as the restriction of a symmetric function ϕ̄ : Sq ×Sq → R
with ϕ̄(x,y) = ϕ(x′y) for all x,y ∈ Sq. This broader perspective motivates extending Sobolev tests
beyond pairwise interactions, leading to the development of m-points tests. These are based on
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kernels h : (Sq)m → R of degreem, that allow the statistic to capture higher-order interactions among
m-tuples of observations. Such kernels are constructed by expanding square-integrable functions on
(Sq)m in an orthonormal basis of the corresponding Hilbert space. The test statistics are thus
determined by the sequence of basis coefficients, which we will refer to as weights.

The contributions of this paper are manifold. First, we introduce two types of m-points tests,
respectively based on U - and V -statistics. Both tests are seen to be equivalent to Sobolev tests in
the specific case where m = 2. We also provide closed-form expressions for m-points kernels on S1
using weights from classical Sobolev tests. Second, we obtain the asymptotic null distribution of
our U - and V -statistics, first for finite m-points tests with truncated kernels, and then for infinite
m-points tests; this distinction is emphasized due to the practical relevance of finite tests when
closed-form expressions are unavailable. The results obtained are non-standard. In particular, some
weak limits under the null hypothesis involve random Hermite polynomials—an unusual feature in
classical statistical frameworks. These polynomials emerge naturally in the limiting behavior of the
test statistics. Third, we derive the asymptotic behavior under fixed and local alternatives. These
asymptotic results on U - and V -statistics drive the definition of critical regions for m-points tests,
which depend on both the type of statistic (U or V ) and the parity of m. Fourth, we discuss the
rotational invariance of our tests. This property holds for m = 2, but generally fails for m > 2. To
recover rotational invariance, two approaches are proposed: (i) a quasi-invariant test via random
rotations and aggregation of p-values that is practically feasible in any dimension, and (ii) an
invariant V -statistic based on a kernel whose closed-form expression and asymptotic distribution
are derived for the circular case.

We study the new tests through a series of numerical experiments with four main objectives.
First, we compare the performance of tests based on the proposed U - and V -statistics (which we
refer to as m-points U - and V -tests, respectively), observing that the latter generally achieve higher
power under local alternatives and also offer a substantial computational advantage when finite
kernels are used, since the complexity is reduced to O(n). This efficiency gain comes from a kernel
reformulation that avoids a complete computation, as required by U -statistics, and motivates our
focus on V -statistics in the remainder of the study. Second, we explore the empirical behavior of
the proposed tests under the null hypothesis, observing that introducing a correction factor in the
U -statistics improves the behavior of the corresponding tests with small sample sizes. Third, we
demonstrate that the V -tests attain increased power over the Sobolev counterparts under various
fixed alternative scenarios. In particular, (m > 2)-points V -tests show better detection power under
multimodal alternatives. Finally, we assess the performance of the rotation-invariant versions: quasi-
rotation-invariant V -tests still show higher power compared to the m = 2 case, and for the rotation-
invariant V -statistics, we illustrate that, in low dimensions, the invariant asymptotic distribution
closely matches that of the original m-points statistics, particularly in the upper tail.

The rest of the paper is organized as follows. Section 2 presents the required fundamentals of
spherical harmonics. Section 3 introduces the m-points class of test statistics, including closed-form
expressions for the circular case. Section 4 derives the asymptotic distribution of the statistics
under the null hypothesis, while Section 5 explores the consistency against fixed alternatives and
extends the asymptotic results to local alternatives. Section 6 defines the tests based on the m-points
statistics, following a discussion on the corresponding critical regions. In Section 7, the rotational
invariance properties of m-points tests are studied. Finally, Section 8 presents comprehensive numer-
ical experiments showing the validity of the theoretical results and the advantages of the new class
of tests. All proofs and additional simulations are provided in the Supplementary Materials (SM).
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2 Spherical harmonics

Let L2(Sq, νq) denote the space of square-integrable functions defined on Sq with respect to the
uniform distribution, νq, and define the inner product ⟨f, g⟩ :=

∫
Sq f(x) g(x) dνq(x) for any f, g ∈

L2(Sq, νq). L2(Sq, νq) is a separable Hilbert space, hence, an orthonormal basis can be obtained. We
work with a specific basis related to the spherical harmonics.

The space of real homogeneous polynomials of degree k ≥ 1 and q + 1 variables is denoted
by Pq+1

k . Let Hq+1
k be the subspace of Pq+1

k of real harmonic polynomials, that is, Hq+1
k :=

{P ∈ Pq+1
k : ∆P = 0}, where ∆ denotes the Laplacian operator ∆ := ∂21 + · · · + ∂2q+1. Spherical

harmonics of degree k are the restrictions of real harmonic polynomials to Sq. We also denote by
Hq+1

k the space of spherical harmonics of degree k. The dimension of the space of spherical har-
monics has the well-known expression given by dimHq+1

k = dq,k, see, e.g., Corollary 1.1.4. in Dai
and Xu (2013). Spherical harmonics of different degrees k ̸= ℓ, ψ ∈ Hq+1

k , ϕ ∈ Hq+1
ℓ are orthogonal

⟨ψ, ϕ⟩ = 0, thus combining orthonormal basis of Hq+1
k for different degrees results in an orthonormal

basis of their direct sum. In addition, the collection of spherical harmonics is dense in L2(Sq, νq),
hence L2(Sq, νq) is equal to the direct sum of Hq+1

k , for k = 0, 1, . . ., see, e.g., Theorem 2.2.2 in Dai
and Xu (2013). In the following, we define a specific basis of spherical harmonics, which can be
found in Theorem 1.5.1 in Dai and Xu (2013) with appropriate corrections to account for errata.

For k = 0, regardless of the dimension q ≥ 1, dq,0 = 1 and an orthonormal basis of Hq+1
0 is

{g0,1} with g0,1(x) := 1 for all x ∈ Sq. For q = 1, let k ≥ 1. Since d1,k = 2, using polar coordinates
x = (cos θ, sin θ), 0 ≤ θ < 2π, the functions gk,1(x) :=

√
2 cos(kθ) and gk,2(x) :=

√
2 sin(kθ), for

every x ∈ S1, form an orthonormal basis of Hq+1
k .

For q ≥ 2, let k ≥ 1, and consider the hyperspherical coordinates

x1 = sin θq · · · sin θ2 sin θ1,
x2 = sin θq · · · sin θ2 cos θ1,

...
xq = sin θq cos θq−1,

xq+1 = cos θq,

(3)

with 0 ≤ θ1 < 2π and 0 ≤ θj ≤ π for j = 2, 3, . . . , q, where x = (x1, . . . , xq, xq+1)
′ ∈ Sq. Let Mk =

{m ∈ Nq+1
0 : |m| := m1 + · · ·+mq+1 = k and mq+1 ∈ {0, 1}}. For m ∈ Mk, let

ζm(s) :=

{
cos(mqs) if mq+1 = 0,

sin((mq + 1)s) if mq+1 = 1
and Bm := bm

q−1∏
j=1

mj !(
q−j+2

2 )|mj+1|(mj + λj)

(2λj)mj (
q−j+1

2 )|mj+1|λj
,

where we write |mj | = mj + · · ·+mq+1 and λj := |mj+1|+(q− j)/2 for any j = 1, 2, . . . , q− 1, and
where bm := 2 if mq +mq+1 > 0 and bm := 1 otherwise. Then, we define φm : Sq → R in spherical
coordinates by

φm(x) :=
√
Bm ζm(θ1)

q−1∏
j=1

(sin θq−j+1)
|mj+1|C

λj
mj (cos θq−j+1),

the collection {φm : m ∈ Mk} is a real orthonormal basis of Hq+1
k , in the sense that ⟨φm, φm̃⟩

= δmm̃ for any m, m̃ ∈ Mk. Note that this orthonormal basis is indeed of cardinality dq,k.
Let us enumerate the m’s in Mk as mr, r = 1, 2, . . . , dq,k, in “colex” (colexicographic) order,

that is, given m, m̃ ∈ Mk, m <c m̃ if and only if there exists an i > 0 such that for all j > i,
(mj = m̃j) ∧ (mi < m̃i). Finally, we define gk,r(x) := φmr(x).
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3 m-points test statistics

3.1 Motivation and definition

Let m ≥ 2 be an integer. Consider the space L2((Sq)m, (νq)m) ≡ L2((Sq)m) of functions defined on
(Sq)m that are square integrable with respect to (νq)

m. Together with the inner product

⟨f, g⟩m :=

∫
(Sq)m

f(x1, . . . ,xm)g(x1, . . . ,xm) d(νq)
m(x1, . . . ,xm),

for f, g ∈ L2((Sq)m), L2((Sq)m) is a separable Hilbert space, in which the set of functions of the form
(x1, . . . ,xm) 7→ gk1,r1(x1) · · · gkm,rm(xm) is an orthonormal basis of the space. Thus, every function
h ∈ L2((Sq)m) can be expressed as

h(x1, . . . ,xm) =
∞∑

k1,...,km=1

dq,k1∑
r1=1

· · ·
dq,km∑
rm=1

⟨h, gk1,r1 · · · gkm,rm⟩m gk1,r1(x1) · · · gkm,rm(xm), (4)

with the series converging in mean square and
∑∞

k1,...,km=1

∑
r⟨h, gk1,r1 . . . gkm,rm⟩2m < ∞. To ease

the notation, we write
∑

r for
∑dq,k1

r1=1 · · ·
∑dq,km

rm=1 in the sequel. Conversely, the Riesz–Fischer Theorem
ensures that given a sequence of weights {wk1,...,km,r1,...,rm} that is square-summable

∞∑
k1,...,km=1

∑
r

w2
k1,...,km,r1,...,rm <∞, (5)

then there is a function hw ∈ L2((Sq)m) such that ⟨hw, gk1,r1 · · · gkm,rm⟩m = wk1,...,km,r1,...,rm . The
m-points class of test statistics leverages this characterization: rather than specifying a kernel di-
rectly, we construct it via its spherical harmonic expansion using a chosen sequence of weights
{wk1,...,km,r1,...,rm} that satisfies (5).

The flexibility offered by kernels of degree m is substantial. However, selecting an appropriate
sequence of weights to ensure desirable characteristics on the statistic is challenging. For this reason,
we restrict our attention to simplified kernels defined on (Sq)m, inspired by the structure of Sobolev
kernels, which depend only on the inner product of pairwise observations, X′

iXj , and whose coeffi-
cients exhibit certain simplifications as a result. To see this, fix m = 2 and consider h ∈ L2((Sq)2)
such that h(x,y) = ϕ(x′y) for all x,y ∈ Sq, for some function ϕ : [−1, 1] → R. This assumption
implies that h is not only symmetric on its arguments but also invariant under arbitrary rotations
of the sample. Then, let

wk1,k2,r1,r2 := ⟨h, gk1,r1gk2,r2⟩2

=
1

ωq

∫
Sq

(∫
Sq
ϕ(x′

1x2)gk1,r1(x1) dσq(x1)

)
gk2,r2(x2) dνq(x2)

=
wk1(ϕ)

ωq

∫
Sq
gk1,r1(x2)gk2,r2(x2) dνq(x2) =

wk1(ϕ)

ωq
δk1k2δr1r2 , (6)

where we applied the Funk–Hecke Theorem, see, e.g., Theorem 1.2.9 in Dai and Xu (2013), σq
denotes the Lebesgue measure on Sq, ωq := σq(Sq) = 2π(q+1)/2/Γ((q + 1)/2) is the surface area of
Sq, and

wk1(ϕ) :=
ωq−1

hq,k1(1)

∫ 1

−1
ϕ(t)hq,k1(t) (1− t2)q/2−1 dt =

cq,k1 ωq−1

hq,k1(1)
bq,k1(ϕ).

Therefore, (6) shows how the rotational invariance inherent in ϕ induces a simplified structure on
{wk1,k2,r1,r2}. This principle can be extended to kernels of degree m by considering weights {wk,r}
with k = (k1, . . . , km) and r = (r1, . . . , rm), satisfying the following:
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(w1 ) Diagonality : wk,r = 0 if there is some i ̸= j such that ki ̸= kj or ri ̸= rj , with i, j ∈ {1, . . . ,m}.

(w2 ) Homogeneity : if k = (k, . . . , k), k ≥ 1, then wk,r = wk,r∗ for any r = (r, . . . , r) and r∗ =
(r∗, . . . , r∗), with r, r∗ ∈ {1, . . . , dq,k}.

Notably, the general sequence of coefficients {wk,r} is reduced to a sequence {wk}∞k=1. This allows
the direct use of classical sequences of Sobolev weights to build kernels of degree m. Based on these
simplified kernels of degree m, we define the class of m-points test statistics.

Definition 3.1 (m-points test statistic). Let {Xi}ni=1 be a sample on Sq, m ≥ 2, and w := {wk}∞k=1

be a real sequence such that
∑∞

k=1w
2
kdq,k < ∞. The m-points test statistic associated with w is

defined as

V (n)
m,w := n−m/2

n∑
i1,...,im=1

Φw(Xi1 , . . . ,Xim)

in its V -form, and as

U (n)
m,w := nm/2

(
n

m

)−1 ∑
1≤i1<···<im≤n

Φw(Xi1 , . . . ,Xim)

in its U -form, with the kernel induced by w given by

Φw(X1, . . . ,Xm) :=
∞∑
k=1

wk

dq,k∑
r=1

ψk,r(X1, . . . ,Xm) :=
∞∑
k=1

wk

dq,k∑
r=1

m∏
j=1

gk,r(Xj). (7)

Note that the square summability condition in (5) simplifies to
∑∞

k=1w
2
kdq,k < ∞ due to the

structure of diagonal, homogeneous weights.
Motivated by the use of simplified weights, the relation between Sobolev and m-points tests

becomes evident: Sobolev statistics are equivalent to 2-points statistics. Let ϕ : [−1, 1] → R be a
function satisfying conditions (c1 ) and (c2 ), and let bq,k(ϕ) be the projections of ϕ as given in (2).
Let the 2-points V -statistic, V (n)

2,w , induced by the sequence of weights wk = a−1
q,kbq,k(ϕ). Then,

V
(n)
2,w =

1

n

n∑
i,j=1

∞∑
k=1

wk

dq,k∑
r=1

gk,r(Xi)gk,r(Xj) =
1

n

n∑
i,j=1

∞∑
k=1

bq,k(ϕ)hq,k(X
′
iXj) = S

(n)
ϕ ,

where hq,k is given in (1) and we used the addition formula of spherical harmonics

dq,k∑
r=1

gk,r(x)gk,r(y) = aq,khq,k(x
′y) (8)

for all x,y ∈ Sq. For the 2-points U -statistic, U (n)
2,w, the equivalence holds up to an affine transfor-

mation,
U

(n)
2,w =

n

n− 1

(
S
(n)
ϕ − ϕ(1)

)
,

where ϕ(1) =
∑∞

k=1wk dq,k <∞.

3.2 Closed-form expressions

Closed-form expressions are useful for avoiding truncation in the computation of statistics with
infinite kernel expansions. This section derives such closed-form expressions for m-points test statis-
tics in the circular case (q = 1) induced by several classical Sobolev weights. We work in polar
coordinates, letting x = (cos θ, sin θ)′ ∈ S1, with 0 ≤ θ < 2π denoting the polar angle.
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Proposition 3.1. Let m ≥ 2 be an even integer, θ = (θ1, . . . , θm)′ be the polar angles of (X1, . . . ,Xm)′,
and w be a real sequence such that

∑∞
k=1w

2
kdq,k <∞. Let Φm,w(θ) := Φw(X1, . . . ,Xm). Then,

Φm,w(θ) =
∞∑
k=1

∑
e

wkνe cos
(
ke′θ

)
, (9)

where the sum
∑

e is carried out over e := (e1, . . . , em)′ ∈ {1} × {−1, 1}m−1, pe :=
∏m

i=1 ei, and
νe := 21−m/2

(
1 + (−1)m/2pe

)
.

When the series
∑∞

k=1wk cos (ke
′θ) converges, the sum and the series in (9) can be interchanged,

resulting in a finite sum that can be related to the classical Sobolev kernels. Indeed, whenever a
closed-form expression is available for the Sobolev kernel ψ(θ) :=

∑∞
k=1wk cos (kθ), for θ ∈ (0, π], a

related closed-form expression ψ̄ can be extended to θ ∈ R by periodicity ψ̄(|θ|) := ψ (2π {|θ|/(2π)})
and exploiting symmetry ψ̄(−|θ|) := ψ̄(|θ|), where {x} := x− ⌊x⌋. The next result collects a set of
classical Sobolev weights for which such closed-form expressions are derived.

Corollary 3.1. Let m ≥ 2 be an even integer. Under the notation of Proposition 3.1, let τe := νe/2
and θ̃e := {e′θ/2π}. Then, denoting Φm,w(θ) := Φw(X1, . . . ,Xm) for a general weight sequence w,
we have:

(i) (m-Watson) wW = {(
√
2πk)−2}∞k=1,

Φm,wW(θ) =
∑
e

τeB2(θ̃e),

where Bk is the kth degree Bernoulli polynomial.

(ii) (m-Anderson–Darling) wAD =
{
(
√
2πk)−2

∫ π
0

1−cos(2kθ)
(π−θ)θ dθ

}∞
k=1

and θ̃e ̸= 0,

Φm,wAD(θ) =
∑
e

τe
[
1 + 2

[
|θ̃e| log |θ̃e|+ (1− |θ̃e|) log(1− |θ̃e|)

]]
.

(iii) (m-Rothman) wR = {sin2(kπt∧)(πk)−2}∞k=1, where t∧ := min(t, 1− t) for t ∈ (0, 1),

Φm,wR(θ; t) =
∑
e

τe

[(
t∧ −

{
|e′θ|
2π

})
+

+

(
t∧ − 1 +

{
|e′θ|
2π

})
+

+ t2∧

]
.

(iv) (m-Pycke) wP = {(2k)−1}∞k=1,

Φm,wP(θ) =
∑
e

−τe log
(
2 sin(πθ̃e)

)
.

(v) (m-Smooth maximum) wS = {e−κIk(κ)}∞k=1 for κ > 0,

Φm,wS(θ;κ) =
∑
e

τe

(
eκ(cos(e

′θ)−1) − e−κI0(κ)
)
.

(vi) (m-Poisson) wPois = {ρk}∞k=1 for ρ ∈ (0, 1),

Φm,wPois(θ; ρ) =
∑
e

τe

(
1− ρ2

1− 2ρ cos(e′θ) + ρ2
− 1

)
.
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4 Null asymptotics

In this section, we derive the asymptotic distribution of the class ofm-points test statistics introduced
in Definition 3.1 under the null hypothesis, assuming the sample X1, . . . ,Xn ∼ νq is independent
and identically distributed (iid). The analysis begins with the limiting distribution of finite m-points
kernels and is then extended to the infinite kernel case. Throughout this and the remaining sections,
we use the notation {Zk,r : k ≥ 1, 1 ≤ r ≤ dq,k} for a collection of independent standard normal
random variables, Hm for the mth order Hermite polynomial, given recursively by H0(x) := 1 and
Hm+1(x) := xHm(x)−H ′

m(x), and ⇝ for weak convergence.

4.1 Finite m-points statistics

We define a K-finite m-points kernel as the truncated version of the kernel given in (7),

Φw,K(X1, . . . ,Xm) :=
K∑
k=1

dq,k∑
r=1

wk ψk,r(X1, . . . ,Xm).

Equivalently, Φw,K can be seen as an m-points kernel induced by weights w such that wk = 0 for
all k > K, thus the square summability condition of w is trivially satisfied. We use the termi-
nology infinite m-points kernel to refer to the m-points kernel (7), i.e., K = ∞. We denote by
U

(n)
m,w,K and V (n)

m,w,K the K-finite m-points U - and V -statistics, respectively. The next proposition
provides the null asymptotic distribution of finite U - and V -statistics. This result underpins the
construction of asymptotic tests based on these statistics, which is the focus of Section 6.

Proposition 4.1. Let q ≥ 1, K ≥ 1, m ≥ 2, and w be a real sequence. Then, under H0 and as
n→ ∞:

(i) U
(n)
m,w,K ⇝ U∞

m,w,K :=
∑K

k=1

∑dq,k
r=1wkHm(Zk,r);

(ii) V
(n)
m,w,K ⇝ V∞

m,w,K :=
∑K

k=1

∑dq,k
r=1wkZ

m
k,r.

4.2 Infinite m-points statistics

Proposition 4.1 can be extended to the case of infinite m-points statistics, provided that certain
natural conditions on the sequence of weights are satisfied. For U -statistics, the square summability
of the weights w suffices, as it guarantees the finiteness of the variance under H0. We now state the
result for U -statistics which, similarly to Proposition 4.1, is crucial for constructing tests based on
U

(n)
m,w (Section 6).

Theorem 4.1. Let q ≥ 1, m ≥ 2, and w be a real sequence such that
∑∞

k=1w
2
k dq,k < ∞. Then,

under H0 and as n→ ∞,

U (n)
m,w ⇝ U∞

m,w :=
∞∑
k=1

dq,k∑
r=1

wkHm(Zk,r). (10)

A corrected version of the U -statistic,

U∗(n)
m,w := A−1

n,m U
(n)
m,w = n−m/2m!

∑
1≤i1<···<im≤n

Φw(Xi1 , . . . ,Xim),

where An,m := nm(n −m)!/n!, has the same asymptotic distribution as in (10). However, the test
based on U∗(n)

m,w presents an improved finite-sample accuracy: when using asymptotic critical values
derived from Theorem 4.1, U∗(n)

m,w yields more accurate results for small sample sizes compared to the
uncorrected statistic U (n)

m,w. See Section 8.1 for details.
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For m-points V -statistics, V (n)
m,w, the asymptotic analysis requires a more careful treatment.

Deriving their weak limit involves a stronger summability condition, resembling (c2 ) used in Sobolev
statistics. The proof builds on the convergence of the normalized average of vectors of spherical
harmonics. To express V (n)

m,w in those terms, we apply the following interchange:

V (n)
m,w = n−m/2

n∑
i1,...,im=1

∞∑
k=1

wk

dq,k∑
r=1

ψk,r (Xi1 , . . . ,Xim)

= n−m/2
∞∑
k=1

wk

dq,k∑
r=1

n∑
i1,...,im=1

m∏
j=1

gk,r(Xij )

=

∞∑
k=1

wk

dq,k∑
r=1

(
n−1/2

n∑
i=1

gk,r(Xi)

)m

. (11)

Note that the statistic is nonnegative for even values of m.
A sufficient condition to ensure the kernel (7) converges is that w is such that

∞∑
k=1

|wk| d
(m−δm2+1)/2
q,k <∞. (12)

While this condition for m = 2 comes from the addition formula for spherical harmonics (8) and the
bound supx∈[−1,1]

∣∣C(q−1)/2
k (x)

∣∣ ≤ C
(q−1)/2
k (1), and coincides with the summability condition (c2 ) of

Sobolev test statistics, the sufficient condition for m > 2 arises from∣∣∣∣∣∣
dq,k∑
r=1

m∏
j=1

gk,r(Xj)

∣∣∣∣∣∣ ≤
dq,k∑

r=1

m−1∏
j=1

g2k,r(Xj)

1/2dq,k∑
r=1

g2k,r(Xm)

1/2

≤ d
(m+1)/2
q,k ,

where we used (8) and the bound on C
(q−1)/2
k , yielding |

∑dq,k
r=1 gk,r(x)gk,r(y)| ≤ dq,k, and∑dq,k

r=1

∏m
j=1 g

2ℓ
k,r(xj) ≤ d1+mℓ

q,k which holds for m ≥ 1 and ℓ ≥ 1, and can be proven by induction
using the sup-norm bound of spherical harmonics supx∈Sq |gk,r(x)| ≤

√
dq,k. We have the following

result for V -statistics, supporting the construction of tests based on V (n)
m,w.

Theorem 4.2. Let q ≥ 1, m ≥ 2 be an even integer, and w a real nonnegative sequence that fulfills
condition (12). Then, under H0 and as n→ ∞,

V (n)
m,w ⇝ V∞

m,w :=

∞∑
k=1

dq,k∑
r=1

wkZ
m
k,r. (13)

Remark 4.1. Once V (n)
m,w is expressed in the form of (11), a sufficient condition for the conver-

gence (13) to hold is
∑∞

k=1wk k
q+λq(m)−1 < ∞ where λq(·) is defined in Lemma 4.1 below. This

requirement is milder than the summability condition (12). It arises from applying Lp asymptotic
bounds for spherical harmonics to guarantee the uniform convergence of the distribution of the K-
finite statistic to that of the infinite one at a specific sample size n as K → ∞, for all sufficiently
large n.

Lemma 4.1 (Sogge (1986)’s Lp asymptotic bound). Let q ≥ 1, k ≥ 1, 1 ≤ r ≤ dq,k, and ℓ ≥ 2.
Define

ℓq :=

{
∞, q = 1,
2(q+1)
q−1 , q > 1

and λq(ℓ) :=

{
q−1
2

(
ℓ
2 − 1

)
, 2 ≤ ℓ < ℓq,

q
(
ℓ
2 − 1

)
− ℓ

2 , ℓq ≤ ℓ <∞.

Then, E
[
|gk,r(X)|ℓ

]
= O

(
kλq(ℓ)

)
.
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5 Non-null asymptotics

In this section, we obtain the asymptotic behavior of m-points U - and V -statistics under three
alternative scenarios: fixed alternatives,

√
n-local alternatives with a general form, and rotationally

symmetric local alternatives with concentration κn → 0. We still use the notation from Section 4
for {Zk,r}, Hm, and ⇝, and we use P→ for convergence in probability.

5.1 Consistency against fixed alternatives

Let X1, . . . ,Xn ∼ H be an iid sample under a fixed alternative, where H has probability density
function (pdf) h ∈ L2(Sq, νq) with respect to the uniform measure νq that admits the expansion
h(x) := 1 + h0(x) with h0(x) :=

∑∞
k=1 h

′
kgk(x), where hk ∈ Rdq,k and gk : Sq → Rdq,k is defined

as gk := (gk,1, . . . , gk,dq,k)
′. We assume that

∑∞
k=1 h

′
kgk(x) converges uniformly on Sq. The latter

holds if h0 is continuously differentiable for q = 1 (uniform convergence of Fourier series), and if it
is ⌊q/2⌋-times continuously differentiable for q ≥ 2, see Theorem 1 in Kalf (1995).

The following result shows the consistency of m-points U - and V -statistics for an even m and a
positive weight sequence. Note that the distribution H must be such that hk is non-null for at least
one k ≥ 1 to represent an alternative distribution different to the uniform.

Proposition 5.1. Let q ≥ 1, m ≥ 2 be an even integer, and w a real sequence such that
∑∞

k=1w
2
kdq,k <

∞ and wk > 0 for all k ≥ 1. Let S ̸= = {(k, r) : hk,r ̸= 0}, where hk,r denotes the rth element of hk.
Assume S̸= is non-empty. Then, under H and as n→ ∞:

(i) U
(n)
m,w,K

P→ +∞ and V (n)
m,w,K

P→ +∞, for K > min{k : (k, r) ∈ S̸=};

(ii) V
(n)
m,w

P→ +∞, given that w fulfills (12);

(iii) U
(n)
m,w

P→ +∞, under the assumption of S̸= being finite.

When any of the assumptions on the parity of m or positiveness of w is dropped, the analysis
becomes more convoluted, even for K-finite statistics. For instance, in the case of V -statistics with
even m and wk < 0 for some k ≥ 1, Vm,w,K could also diverge to −∞ with non-zero probability
depending on w and {hk}. The same could happen for an odd m and a positive sequence w. In the
case where m is even and wk∗ = 0 for some k∗ ≥ 1, a counterexample in which hk∗ ̸= 0 and hk = 0
for all k ̸= k∗ suffices to show Vm,w = OP(1), and thus consistency does not hold.

5.2 Asymptotics under general local alternatives

Let h ∈ L2(Sq, νq) be a pdf with respect to the uniform measure νq, such that it admits the expansion
h(x) := 1 + h0(x), where h0 is defined as in Section 5.1. The sequence of

√
n-local alternatives is

given by the pdf hn, with respect to the Lebesgue measure σq, through

hn(x) :=
1

ωq

{
1 + n−1/2

∞∑
k=1

h′
kgk(x)

}
, x ∈ Sq. (14)

Note that we can rewrite

hn(x) =
1

ωq

(
1− n−1/2

)
+ n−1/2h(x)

ωq
, (15)

which exposes the structure of this sequence of alternatives. Specifically, hn consists of a uniform
component and a perturbation from uniformity vanishing at rate n−1/2.

The next result provides the asymptotic distribution under local alternatives for finite m-points
U - and V -statistics. This distribution corresponds to a shifted version of the corresponding null
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asymptotic distribution, with the shift terms characterizing the power of the tests introduced in Sec-
tion 6. Let X1, . . . ,Xn ∼ hn be an iid sample, and assume that

∑∞
k=1 h

′
kgk(x) converges uniformly

on Sq.

Proposition 5.2. Let q ≥ 1, K ≥ 1, m ≥ 2, and w be a real sequence. Then, under hn and as
n→ ∞:

(i) U
(n)
m,w,K ⇝ U

(h,∞)
m,w,K :=

∑K
k=1

∑dq,k
r=1wkHm (Zk,r + hk,r) ;

(ii) V
(n)
m,w,K ⇝ V

(h,∞)
m,w,K :=

∑K
k=1

∑dq,k
r=1wk (Zk,r + hk,r)

m ;

where hk,r denotes the rth element of hk in both (i) and (ii).

Remark 5.1. For m = 2, the asymptotic distributions under hn can be written as

U
(h,∞)
2,w,K =

K∑
k=1

wkχ
2
dq,k

(
∥hk∥2

)
−

K∑
k=1

wkdq,k and V
(h,∞)
2,w,K =

K∑
k=1

wkχ
2
dq,k

(
∥hk∥2

)
.

As a consequence, the asymptotic distribution under local alternatives is rotation-invariant in the
case m = 2. To see this, consider X with pdf h ∈ L2(Sq, νq) given as in (14). Then, OX, with
O ∈ SO(q + 1) has a pdf given by

hO(x) = h(O−1x) = 1 +
∞∑
k=1

h′
kgk(O

′x) = 1 +
∞∑
k=1

(C′hk)
′gk(x),

with C being an orthogonal matrix of order dq,k (see, e.g., Section 4.2 in Efthimiou and Frye, 2014).
Therefore, the rotated alternative coefficients are hO

k := C′hk and

∥hO
k ∥2 = (C′hk)

′C′hk = ∥hk∥2.

See Section C.2 in SM for an empirical study on the rotational invariance of the asymptotic distri-
bution under local alternatives when m > 2.

To perform numerical experiments (Section 8.1), it is interesting to obtain the coefficients hk,r for
rotationally symmetric alternatives with density h(x) = f(x′µ), with µ ∈ Sq and f : [−1, 1] → R≥0.
An application of the Funk–Hecke Theorem yields

hk,r =

∫
Sq
h(x)gk,r(x) dνq(x) =

∫
Sq
f(x′µ)gk,r(x) dνq(x) =

bq,k(f)

aq,k
gk,r(µ)

for k ≥ 1, where bq,k(f) is given by (2).

5.3 Asymptotics under rotationally symmetric local alternatives

We now consider (absolutely continuous) rotationally symmetric alternatives, that is, alternatives
with pdf

x 7→ cq,κ,ff(κx
′µ), (16)

with respect to the Lebesgue measure σq, where µ ∈ Sq, κ > 0 is a concentration parameter, f : R →
R≥0 is an angular function with f(0) = 1 (for standardization), and
c−1
q,κ,f := ωq−1

∫ 1
−1(1− s2)q/2−1f(κs) ds is a normalizing constant. Many well-known distributions

on the sphere fit in the setup of (16). For instance, the von Mises–Fisher (vMF) distributions
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are obtained with f(s) = exp(s). Below we write P
(n)
κ,f for the joint distribution of an iid sam-

ple of observations, X1, . . . ,Xn, with common density (16). For any positive integer i, define the
coefficients mk,i, k = 0, 1, . . . , i, through

i∑
k=0

mk,iC
(q−2)/2
k (t) = ti.

The asymptotic behavior of m-points statistics is expected to be different from that of Section 5.2
since the value of f and its derivatives at zero (and only at zero) should play a role here. We have
the following result for finite m-points U - and V -statistics that generalize the results by García-
Portugués et al (2025) for m = 2. Non-trivial asymptotic power is obtained against alternatives
with κn ∼ n−1/(2kv), where kv is the rank of the first non-null weight coefficient, when fkv(0) ̸= 0
(fk(0) denoting the kth derivative of f at 0). In the case fkv(0) = 0, the rates of the alternatives
that can be detected rely on the parity of the ranks k for which wk and fk(0) are non-zero. In the
following, K̸= := {k : wk ̸= 0} and the relation k ∼ ℓ on N indicates that k and ℓ share the same
parity.

Proposition 5.3. Consider a real sequence w with only finitely many non-zero terms. Let f be
an angular function that is ℓ(≥ Kw := maxK ̸=) times differentiable at zero. Let kw := min K̸=,
fix τ > 0 and let k∗ be the minimum value of k ∈ {kw, . . . , ℓ} such that (a) fk(0) ̸= 0 and (b)
Vk := {ℓ = kw, . . . , k : ℓ ∼ k and ℓ ∈ K ̸=} is non-empty (assuming that such a k exists). Put
moreover k† := minVk∗. Let q ≥ 1, K ≥ 1, and m ≥ 2. Then, under P

(n)
κn,f

, with κn = n−1/(2k∗)τ
and as n→ ∞:

(i) U
(n)
m,w,K ⇝ U

(h,∞)
m,w,K :=

∑K
k=kw

∑dq,k
r=1wkHm (Zk,r + hk,r) ;

(ii) V
(n)
m,w,K ⇝ V

(h,∞)
m,w,K :=

∑K
k=kw

∑dq,k
r=1wk (Zk,r + hk,r)

m ;

with hk,r :=
mk,k∗ f

k∗(0) τk∗

k∗! aq,k
gk,r(µ)1{k∼k∗,k†≤k≤k∗} in both (i) and (ii)

Remark 5.2. Note that, analogous to Remark 5.1, the asymptotic distribution under P(n)
κn,f

with κn ∼
n−1/(2k∗) is invariant under rotations in the case m = 2. The reason is that hk :=

(
hk,1, . . . , hk,dq,k

)
depends on gk(µ), which under an arbitrary rotation O ∈ SO(q + 1) satisfies gk(Oµ) = Cgk(µ)
with C an orthogonal matrix.

6 m-points tests

In this section, we define the tests based on the m-points statistics. To do so, we determine the
critical regions using the behavior under H1, considering the alternatives introduced in Section 5.
These regions depend on both the type of statistic, U or V , and the parity of m. Throughout, we
assume positive weights and allow K to be infinite.

When m = 2, the test is one-sided for both U - and V - statistics. This follows naturally from the
equivalence between 2-points and Sobolev statistics.

For m > 2, the behavior differs depending on the type of statistic. First, note that for clustered
observations, the kernel ψk,r in (7) may take zero or negative values for certain pairs (k, r). Second,
under general local alternatives, the distribution of U -statistics may shift either left or right depend-
ing on the alternative (see Section C.2 in SM). Accordingly, we define the asymptotic U -test for
m > 2 as a two-sided test. Specifically, the m-points U -test asymptotically rejects H0 at significance
level α when

U
(n)
m,w,K ≥ u∞2,w,K,1−α, if m = 2,
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and when
U

(n)
m,w,K ≤ u∞m,w,K,α/2 or U

(n)
m,w,K ≥ u∞m,w,K,1−α/2, if m > 2,

with u∞m,w,K,α being the asymptotic α-quantile of U (n)
m,w,K , obtained from Proposition 4.1.

For tests based on V -statistics, the rejection region also depends on the parity of m. Consider
the case where m is even. It was shown that V -statistics are nonnegative in this case. Furthermore,
under fixed alternatives, the statistic diverges in probability to +∞ (see Proposition 5.1). Under
local alternatives, note that

E
[
V

(h,∞)
m,w,K

]
=

K∑
k=1

dq,k∑
r=1

wk

⌊m/2⌋∑
j=0

(
m

2j

)
hm−2j
k,r

(2j)!

2j j!

is positive regardless of the signs of hk,r and increases with their magnitude. These properties justify
a one-sided test. In contrast, when m is odd, the same ambiguity in the shift direction observed for
U -statistics suggests a two-sided test. Thus, the V -test rejects H0 when

V
(n)
m,w,K ≥ v∞m,w,K,1−α, if m is even,

and when
V

(n)
m,w,K ≤ v∞m,w,K,α/2 or V

(n)
m,w,K ≥ v∞m,w,K,1−α/2, if m is odd,

with v∞m,w,K,α being the asymptotic α-quantile of V (n)
m,w,K (Proposition 4.1).

Although two-sided tests may incur a modest efficiency loss under some alternatives, simulation
results (Section 8.2) show that the increased sensitivity to non-uniformity provided by higher-order
kernels more than compensates for this potential limitation.

7 Rotational invariance

The equivalence with the Sobolev class for m = 2 was noted in Section 3. In this particular case,
m-points statistics are rotation-invariant. However, this property does not hold in general for m > 2.
In this section, we first propose a test following a p-value aggregation of randomly-rotated tests to
make the m-points test quasi-rotation-invariant for all dimensions q ≥ 1. Then, we introduce a
rotation-invariant test statistic associated with the m-points kernel, whose asymptotic distribution
is readily available in the circular case.

7.1 Aggregation of randomly-rotated tests

The quasi-rotation-invariant test consists of performing R m-points tests on R randomly rotated
versions of the sample, and aggregating the resulting p-values. This randomization-plus-aggregation
approach builds on that of Cuesta-Albertos et al. (2009) with random projections. Since the R
tests are generally dependent, we require a p-value aggregation method that remains valid under
dependency. Recent work has extensively investigated such methods, particularly those based on
homogeneous symmetric generalized means, defined by

Md,R(p1, . . . , pR) :=

(
R∑

r=1

pdr/R

)1/d

, d ∈ [−∞,+∞],

see Vovk and Wang (2020) and Vovk et al. (2022). Wilson (2019, 2020) derives significance thresholds
for Md,R via the Generalized Central Limit Theorem (GCLT), a set of results concerning the domain
of attraction of stable distributions (see, e.g., Section 17.5 in Feller, 1971). Although the GCLT
approach formally assumes independence, the heavy-tailed behavior it induces grants a degree of
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robustness under mild dependence, particularly at small significance levels and d ≤ −1. In this
work, we focus on the Harmonic Mean p-value (HMP), based on M−1,R. This approach shows
strong empirical power in our setting (see Section 8.3.1).

The test rejects H0 if pHMP,R
m,w,K ≤ α at significance level α, where

pHMP,R
m,w,K =

∫ ∞

1/
◦
p
fLandau(x; logR+ 0.874, π/2) dx, with ◦

p :=M−1,R(p1, . . . , pR),

{pj}Rj=1 being the p-values of the correspondingm-points tests with weights w, and fLandau(x;µ, σ) =
(πσ)−1 ∫∞

0 exp {−t(x− µ)/σ − (2/π) t log t} sin(2t) dt being the Landau pdf. Note that for each
defined m-points test in Section 6, there is a corresponding quasi-rotation-invariant test.

7.2 Rotation-averaged invariant test statistic

We now introduce a rotation-invariant version of the m-points test statistics. Let q ≥ 1 and O ∼
νSO(q+1) be a random matrix that follows the Haar distribution on SO(q+1). We define an m-points
rotation-invariant kernel based on the real sequence w such that condition (12) is met, as

Φ̃w(X1, . . . ,Xm) :=EO [Φw(OX1, . . . ,OXm)]

=
∞∑
k=1

wkEO

dq,k∑
r=1

ψk,r(OX1, . . . ,OXm)

 =:
∞∑
k=1

wkΦ̃δk(X1, . . . ,Xm), (17)

where Φw is the m-points kernel (7), and the second equality is justified by the dominated conver-
gence theorem.

Although defined for any dimension q ≥ 1, here we restrict to the study of the circular rotation-
invariant kernel, leveraging the results obtained in Section 3.2 and using the same notation in polar
coordinates. The next result gives exact expressions for a rotation-invariant kernel whose weight
sequence is {δkℓ}∞k=1 for some ℓ ≥ 1. Notably, odd values of m make the kernel identically zero and
thus ineffective. However, for even values of m, the kernel possesses a rotation-invariant component.

Lemma 7.1. Let m ≥ 2 and ℓ ≥ 1. Let θ := (θ1, . . . , θm)′ be the polar angles of each element
(X1, . . . ,Xm)′, α :=

(
α,m−2. . . , α

)
with α ∈ (0, 2π], and Sm,0 := {e ∈ {1} × {−1, 1}m−1 : se = 0}

where se :=
∑m

i=1 ei with e = (e1, . . . , em)′. Let Φ̃m,δℓ(θ) := Φ̃δℓ(X1, . . . ,Xm). Then,

Φ̃m,δℓ(θ) =
1

2π

∫ 2π

0
Φm,δℓ(θ +α) dα =

{
22−m/2

∑
e∈Sm,0

cos (ℓe′θ) , m even,
0, m odd.

(18)

The invariant kernel Φ̃m,δℓ can be projected onto the basis of L2((S2)m) as in (4), yielding the
corresponding sequence of weights.

Proposition 7.1. Let q = 1, ℓ ≥ 1, m ≥ 2 an even integer, and Sm,0 be as defined in Lemma 7.1.
Let k = (k1, . . . , km), r = (r1, . . . , rm), with kj ≥ 1 and rj ∈ {1, 2} for 1 ≤ j ≤ m, and S be the
number of elements in r equal to 1, i.e., S =

∑m
j=1 1{rj=1}. Let uk,r = ⟨Φ̃m,δℓ , gk1,r1 · · · gkm,rm⟩m.

Then, the following statements hold:

(i) If k ̸= (ℓ, . . . , ℓ), then uk,r = 0 for all r.

(ii) If S is odd, then uk,r = 0 for all k.

(iii) If k = (ℓ, . . . , ℓ) and S is even, then:

(a) uk,r = 22−m
(
m−1
m/2

)
for S ∈ {0,m};

(b) uk,r = 22−m(−1)S/2
[
2
(∑

0≤t≤m/4

(
S
2t

)(
m−1−S
m/2−2t

))
−
(
m−1
m/2

)]
, for 0 < S < m.
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Notably, imposing rotational invariance produces some nonzero weights for indices r /∈ {(1, . . . , 1) ,
(2, . . . , 2)}, thus breaking condition (w1 ), and resulting in a non-diagonal m-points kernel. Conse-
quently, it is not possible to construct an m-points statistic based on Φ̃w. Nonetheless, following the
general framework introduced in Section 3, we can define an associated finite V -statistic.

Definition 7.1. Let q = 1, K ≥ 1, m ≥ 2 be an even integer, and w be a real sequence. Then, the
K-finite m-points rotation-invariant V -statistic associated with w is defined as

Ṽ
(n)
m,w,K := n−m/2

n∑
i1,...,im=1

Φ̃w,K(Xi1 , . . . ,Xim),

based on the invariant kernel Φ̃w,K(X1, . . . ,Xm) =
∑K

k=1

∑
r vk,Sr

∏m
j=1 gk,rj (Xj), with

Sr =
∑m

j=1 1{rj=1} and vk,S := wkuS, where uS is given by:

(i) If S is even:

(a) uS = 22−m
(
m−1
m/2

)
for S ∈ {0,m};

(b) uS = 22−m(−1)S/2
[
2
(∑

0≤t≤m/4

(
S
2t

)(
m−1−S
m/2−2t

))
−
(
m−1
m/2

)]
for 0 < S < m.

(ii) Otherwise, uS = 0.

In this last result, we provide the null asymptotic distribution of the rotation-invariant V -
statistic, which can be used to construct asymptotic tests of uniformity.

Proposition 7.2. Let q = 1, K ≥ 1, m ≥ 2 be an even integer, and w be a real sequence. Then,
under H0 and as n→ ∞,

Ṽ
(n)
m,w,K ⇝ Ṽ∞

m,w,K :=
K∑
k=1

m/2∑
s=0

(
m

2s

)
vk,2sZ

2s
k,1Z

m−2s
k,2 ,

with vk,S given in Definition 7.1.

8 Numerical experiments

This section empirically illustrates the theoretical properties of the proposed tests and highlights
the advantages of m-points tests over the Sobolev class of tests. It is divided into three parts.
Section 8.1 compares the V - and U -tests in terms of computational cost, behavior under the null,
and performance under local alternatives. Due to the computational efficiency and retained power
gains, the remaining sections focus on V -tests. Section 8.2 presents extensive simulations evaluating
the power of V -tests under various fixed alternative scenarios, demonstrating improvements over
Sobolev tests. Finally, Section 8.3 investigates the power and empirical size of the quasi-rotation-
invariant m-points V -tests introduced in Section 7.1, along with an analysis of the asymptotic
distribution of the rotation-invariant V -test statistic from Section 7.2.

In all subsequent sections, the tests defined in Section 6 are conducted at significance level
α = 5%, unless otherwise stated, and using specific weight sequences w derived from the classical
Sobolev tests—namely, Cramér–von Mises (equivalent to Watson when q = 1), Anderson–Darling,
and Smooth Maximum. The latter coincides with the Rayleigh (1919) test as κ → 0. The cor-
responding weights are listed in Table 1. Unless specified otherwise, Monte Carlo simulations use
M = 104 samples.
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Legend Test q = 1 q = 2

CvM Cramér–von Mises/Watson (
√
2πk)−2 (2(2k + 3)(2k − 1)(2k + 1))−1

AD Anderson–Darling (
√
2πk)−2

∫ π
0

1−cos(2kθ)
(π−θ)θ dθ (k(k + 1)(2k + 1))−1

S(κ) Smooth Maximum, κ > 0 e−κIk(κ)
√
π/(2κ) e−κIk+1/2(κ)

Table 1: Weight sequences w used for m-points tests simulations when q ∈ {1, 2}. See García-Portugués
et al. (2023) and Fernández-de-Marcos and García-Portugués (2023) for weight sequences when q > 2.

8.1 Comparison of V - and U-tests

8.1.1 Computational cost

The computational cost of U -statistics is strongly influenced by m. Specifically, the U -statistic eval-
uates the kernel over all possible m-ordered tuples of observations taken from a sample of size n,
which results in

(
n
m

)
evaluations. Meanwhile, a naïve computation of the V -statistic evaluates the

kernel on every possible m-tuple with repetitions, which increases the previous count to nm. How-
ever, the transformed version of the V -statistic (11)—essential for the derivation of the asymptotic
behavior of infinite kernels—plays a key role in reducing the computational cost. Following the same
steps, for the K-finite V -statistic we obtain

V
(n)
m,w,K =

K∑
k=1

wk

dq,k∑
r=1

(
n−1/2

n∑
i=1

gk,r(Xi)

)m

,

which entails a computation of O(K dq,K n). Surprisingly, the cost of this transformed V -statistic is
independent of m, making it highly advantageous in practice. Note this transformation also reduces
the cost of evaluating truncated kernels of Sobolev tests, which entail a computation of order O(n2),
obviously at the expense of some (arbitrarily small) discrepancy with the non-truncated kernel. Table
2 compares the average computation time of finite U - and V -statistics across different values of m
and q. The results clearly demonstrate that the computational advantage of V -statistics becomes
increasingly pronounced as m grows.

m
q = 1 q = 2 q = 3

V (ms) U (×) V (ms) U (×) V (ms) U (×)

2 1.7 ×1 8.2 ×1 25.1 ×1
3 1.7 ×2 7.9 ×1 25.5 ×1
4 1.7 ×8 8.1 ×3 25.0 ×2
5 1.8 ×36 8.3 ×11 25.4 ×5
6 1.8 ×161 8.4 ×47 26.4 ×21

Table 2: Relative mean computational times for Um,w,K for a sample of size n = 30, compared to the
corresponding Vm,w,K computational times (in milliseconds). All statistics use an arbitrary positive sequence
w with K = 5. Average times are estimated with 103 Monte Carlo samples.

8.1.2 Empirical sizes

This section compares the empirical sizes of the m-points U - and V -tests on finite samples using
asymptotic critical values. We conducted a Monte Carlo simulation with M = 103 samples drawn
under H0 on Sq, for sample sizes n ∈ {30, 50, 100} and dimensions q ∈ {1, 2, 3}. For each sample,
we performed the tests using Vm,w,10, Um,w,10, and its corrected version U∗

m,w,10 (see Section 4.2),

16



for m ∈ {2, 3, 4, 5, 6} and weight sequences w specified in Table 1. The asymptotic critical values
were approximated by simulating 106 Monte Carlo samples of the set of iid standard normal random
variables {Zk,r}

Kmax,dq,k
k=1,r=1 , Kmax = 10, according to Proposition 4.1.

The empirical rejection proportions are shown in Table 3. V -tests generally maintain the sig-
nificance level even for relatively small sample sizes (e.g., n = 30). In contrast, U -tests tend to be
miscalibrated, and this effect persists even at n = 100, especially for larger values of m. For this
reason, the corrected U∗-test is proposed. This correction substantially improves the calibration for
all m. However, for higher values m = 5, 6, the U∗-tests appear to be significantly more conser-
vative than V -tests. This discrepancy, which vanishes for larger sample sizes (e.g., n = 100), may
be attributed to additional terms that vanish asymptotically but are not included in the scaling
correction in U∗.

8.1.3 Power under local alternatives

In this section, we investigate the asymptotic power attained by m-points U - and V -tests under the
local alternatives introduced in Section 5.2. The scenarios explored in dimensions q ∈ {1, 2, 3} are
in the form of (15) where the pdf h corresponds to:

(∨) vMF (q = 1, 2, 3): the vMF distribution with concentration κ > 0 and location parameter
µ = (0, . . . , 0, 1)′ ∈ Sq. Its pdf fµ,κ : Sq → R is given by x 7→ cq,κe

κx′µ, where cq,κ is the
corresponding normalizing constant.

(◦) Belts (q = 2): a mixture of 2N equally-weighted vMF distributions whose locations {±µ1, . . . ,
±µN} ⊂ Sθ := {(cosϕ sin θ, sinϕ sin θ, cos θ)′ : ϕ ∈ [0, 2π)} for a given θ ∈ [0, π/2), are equally
spaced in Sθ with µ1 = (

√
1− cos2 θ, 0, cos θ)′, and share a common concentration κ.

(+) Cross-like (q = 1, 2, 3): a mixture of 2(q+1) equally-weighted vMF distributions with locations
µj := (−1)je⌊(j+1)/2⌋ for 1 ≤ j ≤ 2(q + 1), where ej denotes the jth canonical vector, and
with common concentration κ.

For each local alternative scenario, we computed the asymptotic distribution given by Proposi-
tion 5.2 by simulating 106 Monte Carlo samples of the sets of iid standard normal random variables
{Zk,r}

Kmax,dq,k
k=1,r=1 , Kmax = 10. The asymptotic critical values were also computed by the same method,

as described in Section 8.1.2. Then, the asymptotic powers of U - and V -tests for m ∈ {2, 3, 4, 5, 6}
and weights w specified in Table 1 were computed and presented in Table 4. This table shows that,
for m > 3, V -tests exhibit superior power compared to their U -test counterparts. In contrast, for
m = 3, U -tests seem to outperform V -tests. For m = 2, both tests have identical power, as the
asymptotic distribution of the U -statistic is simply a shifted version of the V -statistic distribution.

8.2 Power under fixed alternatives

An extensive empirical study analyzes the power attained by m-points V -tests compared to their
m = 2 equivalent Sobolev tests under several scenarios. The simulated scenarios depend on the
dimension explored, but, in contrast to the previous section, they are fixed alternatives. In the case
q = 1, the scenario consists on

(∗) (MvMF ) a mixture of N equally-weighted vMF distributions whose locations µ1, . . . ,µN are
equally spaced along S1, with µ1 = e1 = (1, 0)′, and share a common concentration κ;

in the case q = 2, we explore Belts (◦) and Cross-like (+) alternatives.
Under each specific scenario and for each sample of size n = 100, we performed V -tests using

Vm,w,10 for m ∈ {2, 3, 4, 5, 6} and w listed in Table 1. Asymptotic critical values were computed as
in Section 8.1.2, and empirical rejection proportions were obtained. The goal of these experiments
is to quantify the power advantage achieved by using larger m compared to the baseline Sobolev
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m Test n
q = 1 q = 2 q = 3

CvM AD S(0.1) S(10) CvM AD S(0.1) S(10) CvM AD S(0.1) S(10)

2

V
30 5.0 4.9 5.0 4.8 5.9 6.1 5.0 5.4 5.3 5.3 5.0 5.8
50 5.9 5.9 6.0 5.3 4.8 4.6 4.6 4.1 3.4 3.3 3.4 4.8
100 3.9 4.3 3.7 5.2 4.0 4.5 4.0 4.9 4.4 4.4 4.2 5.2

U
30 5.0 5.7 6.4 5.2 5.6 5.5 7.1 6.0 6.9 6.6 7.3 4.6
50 5.6 4.5 6.3 5.8 4.2 4.0 5.2 3.9 5.4 5.5 5.4 4.4
100 4.8 5.2 6.0 4.8 6.1 6.5 5.5 5.4 4.6 4.7 4.6 4.4

U∗
30 3.6 3.6 4.2 3.4 4.6 4.8 5.2 4.5 5.2 5.2 5.0 4.5
50 4.8 4.9 5.4 4.1 4.0 4.1 4.8 4.3 4.9 5.0 4.6 5.0
100 4.2 4.6 4.2 5.0 3.3 3.7 4.2 4.4 5.0 5.3 6.1 4.8

3

V
30 4.3 4.6 3.9 3.5 4.5 4.3 4.5 4.5 5.3 5.5 5.4 4.7
50 4.8 4.3 4.5 4.5 5.5 5.4 5.1 4.7 4.9 4.6 5.1 4.7
100 5.6 5.9 5.4 4.8 5.4 5.3 5.6 5.2 3.9 4.0 4.2 5.3

U
30 5.7 6.5 5.4 5.1 6.7 6.7 6.6 6.4 5.6 5.4 5.4 6.8
50 6.4 5.5 5.6 6.1 4.4 4.4 4.9 4.9 5.5 5.3 5.5 4.5
100 5.0 4.1 5.1 5.4 4.4 4.5 4.4 5.5 5.2 5.3 4.9 5.9

U∗
30 5.1 4.4 4.7 4.4 4.2 3.9 4.2 4.4 5.9 5.6 5.8 4.4
50 4.2 4.1 5.0 4.4 5.4 5.5 5.3 5.2 3.4 3.4 3.4 4.0
100 5.5 5.5 5.1 5.1 4.8 5.0 5.3 4.4 4.8 4.8 4.5 4.1

4

V
30 5.3 5.1 5.1 4.8 4.7 4.7 4.4 4.7 4.7 4.6 4.5 4.1
50 3.8 3.9 4.0 4.7 4.5 4.5 4.4 4.3 5.3 5.3 5.1 5.4
100 3.4 3.6 3.8 3.7 4.9 5.1 4.9 5.6 4.4 4.5 4.4 5.8

U
30 6.3 8.6 11.3 7.2 9.9 10.1 10.0 9.1 7.1 7.1 7.4 7.7
50 6.4 8.4 8.7 6.0 6.3 6.2 6.2 6.9 6.5 6.0 6.3 6.4
100 7.1 5.6 8.5 5.6 6.8 6.4 6.3 7.2 5.5 5.5 5.5 4.9

U∗
30 4.2 4.3 3.9 4.3 3.6 3.8 3.3 4.2 4.9 4.6 4.6 4.0
50 3.3 3.3 2.9 3.2 5.0 5.1 5.7 4.6 3.9 4.2 3.6 3.9
100 5.6 5.4 5.9 4.6 4.9 4.8 4.6 4.1 4.6 4.5 4.7 4.7

5

V
30 3.9 4.0 4.2 3.8 5.6 5.4 5.6 5.3 5.5 5.3 5.4 4.6
50 5.8 4.0 5.8 5.8 4.8 5.1 4.5 4.2 5.5 5.3 5.5 4.2
100 5.3 4.2 5.4 5.0 4.9 5.0 5.1 4.4 3.9 3.9 4.2 5.2

U
30 8.7 10.1 9.2 9.4 9.3 9.5 8.2 10.6 10.7 10.9 11.1 10.1
50 7.1 8.3 6.4 6.6 7.8 7.6 8.1 7.8 10.3 9.8 10.0 7.7
100 6.0 6.6 6.3 6.5 7.1 6.7 7.2 8.0 6.3 6.3 6.1 6.9

U∗
30 1.7 2.2 2.0 2.6 4.8 5.0 4.6 3.6 3.2 3.3 3.4 3.2
50 4.0 4.1 4.1 3.8 4.3 4.1 4.3 3.8 5.1 4.6 4.7 4.3
100 5.1 4.8 4.6 4.3 5.2 4.9 5.2 5.1 5.3 4.8 5.3 4.9

6

V
30 3.0 3.6 4.4 3.5 4.7 4.7 5.1 3.8 4.4 4.8 4.5 6.6
50 6.3 6.6 5.8 5.8 5.0 4.6 4.4 5.1 4.3 4.2 4.4 5.8
100 5.0 5.1 5.0 5.2 4.3 4.4 5.0 3.7 4.7 4.5 4.6 4.6

U
30 12.9 14.1 13.5 14.2 14.2 14.6 15.3 13.8 15.4 14.8 15.6 14.9
50 10.7 7.8 10.4 12.3 8.6 8.6 9.0 11.6 8.7 9.2 8.3 10.9

U∗ 30 1.5 1.6 1.2 2.0 1.6 2.0 1.6 3.1 1.8 1.9 1.7 3.3
50 2.2 2.4 1.5 2.6 2.7 2.9 2.6 3.1 2.2 2.3 2.2 3.6

Table 3: Empirical sizes (%) of m-points tests (Vm,w,10, Um,w,10, and U∗
m,w,10), with m ∈ {2, 3, 4, 5, 6} and

weights specified in the header row. Samples of size n ∈ {30, 50, 100} are drawn in dimensions q ∈ {1, 2, 3}.
Boldface indicates empirical sizes outside the 95% asymptotic confidence interval.

tests (m = 2). For this purpose, Figures 1–3 plot the difference in power between each m-points test
and the Sobolev test as a function of the common concentration parameter κ, for each respective
scenario. A summary of these results is provided in Table 6 to facilitate the discussion.

The results remain consistent across scenarios (∗), (◦), and (+). In general, for a fixed choice
of weights w, increasing m improves the power of the test. However, such improvement occurs only
when the baseline Sobolev test (m = 2) already achieves non-negligible power (absolute power curves
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q hn Test m = 2 m = 3 m = 4 m = 5 m = 6
κ

V U V U V U V U V U

1

vMF (∨)

CvM 25.3 25.3 19.5 23.1 25.4 19.6 21.8 17.6 25.9 17.5 15
AD 26.8 26.6 18.8 22.9 27.1 19.8 22.0 17.2 26.4 17.7 15

S(0.1) 21.4 21.4 20.5 21.2 21.1 18.0 21.1 16.5 22.0 16.3 15
S(10) 32.4 32.2 18.1 22.3 29.3 20.4 21.7 17.3 26.6 17.4 15

Cross (+)

CvM 5.3 5.5 5.1 5.4 5.3 5.9 5.6 5.8 6.4 5.6 255
AD 5.6 6.0 5.3 5.6 5.8 6.1 5.9 6.1 7.2 5.9 255

S(0.1) 5.0 5.0 4.9 5.0 4.8 5.0 4.8 5.0 4.8 4.8 63
S(10) 8.6 8.6 8.3 9.4 9.9 8.9 9.8 8.9 10.8 7.5 1023

2

vMF (∨)

CvM 28.7 28.8 21.3 24.6 29.1 22.0 24.7 20.4 30.6 18.7 15
AD 31.0 31.0 20.6 24.8 31.8 22.8 24.8 20.5 33.1 20.1 15

S(0.1) 24.7 24.7 23.9 24.6 25.5 20.6 24.2 18.2 25.4 17.5 15
S(10) 46.5 46.5 20.7 25.1 42.2 23.6 26.0 22.3 35.9 22.3 15

Belts (◦)
N = 6
θ = π/4

CvM 5.2 5.2 5.1 5.0 5.2 5.2 5.2 5.2 5.3 5.3 1023
AD 5.3 5.2 5.2 5.2 5.5 5.2 5.3 5.4 5.5 5.0 1023

S(0.1) 5.0 5.0 5.0 4.9 5.0 5.1 4.8 4.9 4.9 5.0 0
S(10) 7.6 7.5 6.7 6.2 7.3 6.3 6.7 6.6 7.0 6.4 1023

Cross (+)

CvM 5.5 5.4 4.9 5.2 5.5 5.0 5.1 5.3 5.8 5.9 1023
AD 5.6 5.4 5.0 5.1 5.6 5.2 5.4 6.0 6.4 6.1 255

S(0.1) 5.1 4.8 5.0 5.1 5.1 5.2 4.9 4.8 5.0 5.1 0
S(10) 12.1 12.2 10.7 10.8 14.0 10.2 13.1 12.4 15.7 10.9 1023

3

vMF (∨)

CvM 31.4 31.1 23.5 25.9 32.7 23.9 26.6 22.6 34.8 20.9 15
AD 33.3 33.9 22.9 26.4 35.0 24.6 26.6 23.8 36.4 21.7 15

S(0.1) 26.9 26.9 25.7 26.6 28.2 22.2 26.2 19.7 28.2 18.5 15
S(10) 57.3 57.4 21.3 26.4 54.4 27.5 29.5 26.7 46.0 26.2 15

Cross (+)

CvM 5.3 5.3 4.9 5.0 5.3 4.9 5.0 5.3 5.5 5.7 255
AD 5.5 5.5 5.0 4.9 5.5 4.6 5.1 5.9 5.9 6.5 1023

S(0.1) 5.1 4.9 5.0 4.9 5.0 4.9 5.0 5.0 5.2 4.8 255
S(10) 17.1 17.1 12.8 13.4 21.9 12.9 18.0 16.9 24.2 16.5 1023

Table 4: Asymptotic power (%) of Um,w,10- and Vm,w,10-tests, with m ∈ {2, 3, 4, 5, 6} and weights specified
in Table 1, under local alternatives hn on different dimensions q ∈ {1, 2, 3}. For each alternative scenario
and weight sequence, κ is chosen as the one at which the Sobolev test (m = 2) attains the maximum power.
Boldface indicates the maximum power for each combination of m and weight sequence, if the difference is
significant (two-sample z-test α = 5%).

can be found in Figures 5–7 of Section C.1 in SM). Otherwise, increasing m does not enhance the
power of the test for that particular weight sequence. Importantly, in no case explored, increasing
m significantly reduces power; the power curves remain at least as high as those of the Sobolev test.
These findings support viewing m-points tests as a natural extension of Sobolev tests that generally
offer improved performance.

The effect of K has also been investigated. Simulations of tests based on Vm,w,K for K ∈
{4, 10, 40} with the usual values of m and w, show that increasing K does not lead to substantial
changes in empirical power. However, the effect of K might depend on the decay rate of the sequence
w, with higher differences for slowly decreasing weights.

8.3 Rotational invariance

8.3.1 Aggregation of randomly-rotated tests

This section demonstrates the empirical behavior of the quasi-rotation-invariant m-points tests via
HMP aggregation introduced in Section 7.1. The simulations explore the empirical sizes under
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the null hypothesis and the power attained under alternative scenarios (∗), (◦), and (+), already
introduced in Section 8.2.

Table 5 presents the empirical sizes. For each sample of size n = 100 drawn under H0, we
performed V -tests at significance levels α ∈ {1%, 5%, 10%} based on pHMP,R

m,w,10 with R = 50 ran-
dom rotations, m ∈ {3, 4, 5, 6}, and w specified in Table 1. As discussed in Section 7.1, for lower
significance levels (α < 5%), the tests are well calibrated. At α = 5%, although the empirical
sizes lie outside the 95% asymptotic confidence interval, the rejection proportions do not exceed the
significance level, meaning the test tends to be conservative but not liberal.

Following the simulation setting of Section 8.2, the empirical power gains of quasi-rotation-
invariant V -tests, pHMP,R

m,w,10 with R = 50, relative to Sobolev tests (m = 2) were obtained under
alternative scenarios (∗), (◦), and (+). Table 6 summarizes the comparison between m-points
and the corresponding quasi-rotation-invariant tests. Observe that the latter exhibit lower power.
However, the decrease is minor, and the power gains are retained. As with m-points tests, increasing
m does not degrade the performance of the tests, achieving at least similar power to m = 2 tests.
In fact, as m increases, the power gap between the m-points and the quasi-rotation-invariant tests
narrows, and given the independence of computational cost from m, large-m quasi-rotation-invariant
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Figure 1: Empirical rejection proportion difference curves under scenario (∗) as a function of concentration
κ. Each row corresponds to a different number of mixture components, N ∈ {2, 3, 4, 5}. Curves compare
m-points V -tests against the baseline Sobolev test (m = 2). Tests are based on Vm,w,10, m ∈ {3, 4, 5, 6}, with
weights indicated by columns, and n = 100.
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Figure 2: Empirical rejection proportion difference curves under scenario (◦) with N = 6 as a function of
concentration κ, each row corresponding to a different parameter value θ ∈ {π/12, π/4, 5π/12}. The same
description of Figure 1 applies.
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Figure 3: Empirical rejection proportion difference curves under scenario (+) as a function of concentra-
tion κ. The same description of Figure 1 applies.

V -tests remain practical. Detailed results under each alternative scenario are reported in Section C.1
in SM (Figures 8–13).

8.3.2 Rotation-averaged invariant test statistic

In this section, we illustrate the behavior of the rotation-invariant V -statistic proposed in Section 7.2.
While the focus is primarily on the circular case, we also investigate the hyperspherical case using
an approximation to the invariant kernel. The example consists on the m-CvM test statistic and an
m-points test statistic based on an equally-weighted sequence, w = 1.

For q = 1, the asymptotic distribution of V (n)
m,w,K is given by

∑K
k=1wk(Z

m
k,1 + Zm

k,2), whereas
the asymptotic distribution of Ṽ (n)

m,w,K includes additional terms, involving the invariant coefficients
uk,S (see Definition 7.1). Figure 4 presents P–P plots comparing the asymptotic distributions of
the m-points statistic (x-axis) and its rotation-invariant counterpart (y-axis). These plots are com-
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Test q
m = 3 m = 4 m = 5 m = 6

1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

CvM

1

0.87 3.77 6.53 0.90 3.57 7.06 1.14 3.99 6.33 0.86 4.23 6.32
AD 1.04 3.85 6.53 1.21 3.56 7.18 0.82 3.70 6.39 0.93 3.90 6.37
S(0.1) 0.84 3.75 6.56 0.89 3.62 7.12 1.12 4.12 6.69 0.89 4.24 6.59
S(10) 0.84 3.98 6.82 0.89 3.70 7.09 0.95 3.52 6.37 0.96 4.10 6.60

CvM

2

1.01 4.18 6.76 0.96 3.91 6.61 1.05 4.13 6.89 0.91 3.90 6.78
AD 1.00 4.15 6.74 0.95 3.88 6.51 1.04 4.01 6.87 0.88 3.88 6.81
S(0.1) 1.03 4.24 6.82 0.95 4.07 6.66 1.04 4.21 7.07 0.89 4.01 6.83
S(10) 1.04 4.22 7.51 1.07 4.42 7.05 0.83 4.16 7.17 0.94 4.35 7.63

CvM

3

1.19 4.13 6.65 1.00 3.88 6.74 1.09 4.06 7.29 1.02 4.18 7.12
AD 1.18 4.13 6.63 0.99 3.87 6.74 1.08 4.04 7.10 1.04 4.14 7.07
S(0.1) 1.17 4.17 6.67 1.00 3.93 6.71 1.10 4.08 7.36 1.04 4.21 7.12
S(10) 1.29 5.04 8.41 1.11 4.69 7.79 0.99 4.49 8.44 1.16 5.38 9.45

Table 5: Empirical sizes (%) of quasi-rotation-invariant m-points V -tests (pHMP,50
m,w,10 ), with m ∈ {3, 4, 5, 6}

and weights in first column. Tests are conducted at α ∈ {1%, 5%, 10%} with samples of size n = 100 in
dimensions q ∈ {1, 2, 3}. Boldface indicates sizes outside the 95% asymptotic confidence interval.

plemented by analogous comparisons based on empirical distributions obtained from Monte Carlo
samples of size n ∈ {10, 100}. The emphasis is on the asymptotic agreement between both versions
of the statistic, while the empirical curves illustrate how closely this agreement holds in practice
for moderate sample sizes. Interestingly, the differences between the m-points test statistic and its
rotation-invariant version are small; indeed, they are statistically negligible (α = 5%) for m = 4,
although significant for m = 6. These differences are mostly present in lower quantiles of the distri-
butions, but they vanish in the upper tail. This observation is further supported in Table 7, where
the empirical sizes of one-sided tests based on Ṽ

(n)
m,w,5 for m ∈ {4, 6} using the asymptotic critical

values derived from the non-rotation-invariant statistic, suggest that the discrepancy between the
two asymptotic laws is negligible in practice, in particular, for rapidly decaying weights.

For higher dimensions, q > 1, we approximate (17) by averaging the original non-invariant V -
statistic over R = 100 random rotations of the sample. The two bottom rows of Figure 4 show
the resulting P-P plot in q ∈ {2, 5}. Notably, the differences are minimal in the upper quantiles
for CvM weights, but they become significant with w = 1. This may be attributed to the contri-
bution of higher-degree spherical harmonics, whose number increases with the degree k, and when
assigned a constant weight, the cumulative effect becomes more pronounced compared to rapidly
decaying weight sequences. Additionally, the number of spherical harmonics involved in a given
kernel increases with q, which may account for the growing differences observed as the dimension
increases. Thus, the practical validity of using non-rotation-invariant asymptotic critical values for
the invariant approximated V -statistic deteriorates in higher dimensions and with slowly decaying
weights (Table 7).

9 Discussion

This paper provides a general class of uniformity tests on the hypersphere that extends the classical
Sobolev framework while offering improved practical performance, particularly under multimodal
alternatives that are challenging for traditional Sobolev tests to detect. The proposed m-points test
statistics are constructed using a restricted class of square-integrable kernels of degree m, enabling a
natural extension of Sobolev tests by using their corresponding sequences of weights. The strength
and flexibility of this class arise from several features of the test statistics.

A key feature of the m-points statistics is their definition in two forms: based on U - and V -
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q Alternative Test m = 3 m = 4 m = 5 m = 6
κV HMP V HMP V HMP V HMP

1
MvMF

(∗)

N = 2

CvM 0.8 1.0 1.1 1.1 1.1 1.1 1.1 1.1 3
AD 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 3

S(0.1) 7.8 −2.0 78.7 59.0 88.9 84.9 90.7 89.7 3
S(10) 0.2 −1.0 0.1 −1.0 0.1 −1.3 0.0 −1.0 0

N = 3

CvM 47.6 45.4 52.2 51.6 52.3 52.2 52.4 52.3 6
AD 3.0 −1.9 15.8 8.0 21.6 13.5 27.5 19.6 3

S(0.1) −0.2 −1.2 2.0 0.1 30.4 −0.6 95.0 94.1 15
S(10) 6.3 4.9 12.4 5.4 12.4 6.9 13.7 7.8 3

N = 4

CvM 32.9 12.1 75.8 64.8 82.0 78.8 84.1 82.2 9
AD 48.6 35.5 70.4 65.3 72.8 71.4 73.6 72.7 9

S(0.1) 0.3 −1.2 0.3 −1.4 0.2 −1.1 0.2 −1.3 15
S(10) 14.0 11.5 25.1 18.0 26.7 20.9 30.2 23.9 6

N = 5

CvM 19.3 1.0 77.4 62.2 85.8 81.9 88.2 86.2 15
AD 46.4 29.2 78.4 72.5 80.7 79.3 81.5 80.6 15

S(0.1) 0.1 −0.9 −0.2 −1.2 0.3 −1.2 0.2 −1.6 3
S(10) 27.2 25.3 38.7 34.6 40.3 37.8 41.8 39.8 12

2

Belts
(◦)

θ = π/12

CvM 35.9 11.1 62.5 53.1 66.6 62.2 69.2 67.1 6
AD 33.9 20.6 46.8 42.6 48.0 46.2 49.3 48.3 6

S(0.1) 1.1 −2.8 41.3 8.5 84.8 60.5 91.3 90.1 12
S(10) 4.1 5.1 6.8 3.2 5.2 5.4 5.4 5.0 3

θ = π/4

CvM 26.5 −9.3 63.1 48.4 69.1 48.4 72.0 71.0 15
AD 24.5 −7.9 49.7 38.2 54.4 36.5 58.2 55.4 12

S(0.1) −0.4 −1.5 1.6 −0.3 5.0 −1.3 21.5 9.2 15
S(10) 3.3 0.2 3.5 2.9 1.9 −0.3 2.4 2.9 9

θ = 5π/12

CvM 29.5 22.6 36.8 35.1 37.1 36.7 37.7 37.4 3
AD 11.8 9.8 14.7 14.0 14.7 14.5 14.9 14.8 3

S(0.1) 0.5 −3.0 32.7 12.6 66.7 43.2 82.9 73.7 3
S(10) 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 3

Cross
(+)

CvM 39.5 −6.0 86.6 75.2 87.2 86.1 87.3 87.3 12
AD 12.7 −6.3 67.1 30.5 81.7 58.2 86.7 79.3 9

S(0.1) −0.1 −1.2 −0.4 −0.8 −0.2 −0.4 0.2 −1.0 0
S(10) 11.7 1.7 23.0 13.2 23.9 17.2 28.6 20.7 6

Table 6: Empirical rejection proportion difference (%) between the m-points test indicated in columns (V
refering to Vm,w,10 and HMP to pHMP,50

m,w,K in its V -form) and the corresponding Sobolev tests (m = 2), with
weights indicated by rows, and n = 100. For each alternative and weight sequence, κ is chosen as the one
that maximizes V6,w,K power difference among κ ∈ {3k : 0 ≤ k ≤ 5}.

statistics. The structure of their critical regions depends on the form of the statistic and the parity
of m. Empirical results have shown that V -tests generally outperform U -tests in terms of power,
with this greater advantage when m is even. At the same time, the superior performance of V -tests
is largely attributed to the truncation of kernels. Finite V -statistics (expressed in terms of spherical
harmonics, unlike typical Sobolev statistics) reduce the computational complexity from O(nm) to
O(n), offering significant practical advantages over their U -counterparts. Nonetheless, infinite ker-
nels can be used through the closed-form expressions obtained in the circular case, but they entail
higher computational cost. The asymptotic null distribution has been derived for finite and infinite
m-points statistics, and shown to be usable in practice for both U - and V -tests. Notably, infinite
V -tests with even m and positive weights are omnibus under a general class of fixed alternative
distributions.
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Figure 4: P-P plots comparing the asymptotic and empirical n ∈ {10, 100} distributions of the m-points V -
statistics, Vm,w,5, and their rotation-invariant counterparts Ṽm,w,5, for dimensions q ∈ {1, 2, 5} corresponding
to each row. Two choices of weights are considered: CvM (left panel) and constant 1 (right panel). Columns
within each panel correspond to different values ofm ∈ {4, 6}. p-values from two-sample Kolmogorov–Smirnov
tests (KSn) assess differences between V (n)

m,w,5 and Ṽ (n)
m,w,5.

Regarding rotational invariance, the harmonic mean p-value approach provides a quasi-invariant
approach that preserves the improved performance of m-points tests over the Sobolev class. In
addition, a fully rotation-invariant kernel has been introduced, with a closed-form expression for the
circular case. While this kernel does not fall into the proposed m-points class, it motivates a more
general form ofm-points statistic, whose asymptotic results have also been derived. Interestingly, the
generalized statistic is only defined for even values of m, as they exhibit some rotational invariance
character, which is absent for odd m.

Supplementary materials

The supplementary materials contain the proofs of all the results presented in this paper, along with
additional simulation results.
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q
Asymptotic

critical values n
m = 4 m = 6

1% 2.5% 5% 1% 2.5% 5%

1

Ṽ
(n)
m,CvM,5

V
10 0.63 1.93 4.34 0.56 1.86 4.15
100 0.88 2.39 4.90 0.87 2.36 4.90

Ṽ
10 0.67 1.97 4.39 0.62 1.92 4.12
100 0.93 2.44 4.95 0.94 2.42 4.88

Ṽ
(n)
m,1,5

V
10 0.38 1.29 3.03 0.20 0.94 2.62
100 0.83 2.17 4.50 0.74 2.05 4.52

Ṽ
10 0.46 1.42 3.22 0.28 1.08 2.82
100 0.96 2.34 4.80 0.90 2.28 4.77

2
Ṽ

(n)
m,CvM,5

V
10 0.58 1.94 4.38 0.60 2.01 4.37
100 0.87 2.43 4.91 0.90 2.43 4.91

Ṽ
(n)
m,1,5 V

10 0.89 1.98 3.82 0.32 0.98 2.31
100 0.52 1.55 3.64 0.16 0.75 2.31

5
Ṽ

(n)
m,CvM,5

V
10 0.51 1.87 4.33 0.40 1.70 4.44
100 0.79 2.10 4.60 0.61 2.03 4.79

Ṽ
(n)
m,1,5 V

10 7.39 12.30 17.84 8.64 16.90 26.47
100 0.71 1.92 4.21 0.17 0.83 2.42

Table 7: Empirical sizes (%) of one-sided m-points rotation-invariant V -tests, Ṽm,CvM,5 with CvM weights
(Table 1), and Ṽm,1,5 with w = 1, for q ∈ {1, 2, 5}. Tests are conducted at α ∈ {1%, 2.5%, 5%} using two
different asymptotic critical values: those of the corresponding non-rotation-invariant statistics (V ), Vm,CvM,5

and Vm,1,5, and those of the rotation-invariant statistics (Ṽ ). Boldface indicates empirical sizes outside the
95% asymptotic confidence interval.
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Supplementary materials for “On m-points uniformity tests on
hyperspheres”

Alberto Fernández-de-Marcos1, Eduardo García-Portugués1, and Thomas Verdebout2

Abstract

These supplementary materials are divided into three parts. Section A contains the proofs of
the results presented in the paper, Section B gathers and proves technical lemmas, and Section C
includes additional results obtained from numerical experiments.

Keywords: Circular data; Spherical data; Uniformity tests.

A Proofs of the main results

A.1 Proofs of Section 3

Proof of Proposition 3.1. Note that using the notation in Lemma B.1, for a general sequence of
weights w = {wk}∞k=1, we can write its associated kernel as the series

Φw(X1, . . . ,Xm) =
∞∑
k=1

wkΦδk(X1, . . . ,Xm),

with δk = {δjk}∞j=1, which by Lemma B.1 for even values of m results in the desired expression.

Proof of Corollary 3.1. The proof relies on straightforward computation and extension by sym-
metry explained in Section 3.2, once the trigonometric series arising in Fourier series, are identified.
The expression for Φm,wW is directly obtained through the well known identity

∞∑
k=1

cos (2πkx)

k2
= π2B2({x}), x ∈ R,

and Φm,wP using the identity

∞∑
k=1

cos (kθ)

k
= − log

(
2 sin

θ

2

)
, 0 < θ < 2π.

The rest are obtained from the following works: Φm,wR from Corollary 3.6 and Proposition 2.6 in
García-Portugués et al. (2023), Φm,wAD from Propositions 2.7 and 3.2 in the same paper, and Φm,wS

and Φm,wPois from Proposition 3 in Fernández-de-Marcos and García-Portugués (2023).

1Department of Statistics, Universidad Carlos III de Madrid (Spain).
2Department of Mathematics and ECARES, Université libre de Bruxelles (Belgium).
3Corresponding author. e-mail: albertfe@est-econ.uc3m.es.
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A.2 Proofs of Section 4

Proof of Proposition 4.1. We first prove part (i). Let k ≥ 1 and 1 ≤ r ≤ dq,k be fixed. We
make use of the hollow sum formula given in Rubin and Vitale (1980), which holds for the kernel
ψk,r(X1, . . . ,Xm) due to its product form,∑

[n,m]

ψk,r(Xi1 , . . . ,Xim) =
∑
P

∏
V ∈P

(−1)|V |−1 (|V | − 1)!S(V ), (19)

where
∑

[n,m] denotes summation over all the permutations of (i1, . . . , im) a subset of {1, . . . , n},∑
P denotes the sum over all possible partitions P of {1, . . . ,m}, and S(V ) :=

∑n
i=1(gk,r(Xi))

|V |.
Consider a partition P having j subsets, for which j1 of them are of size 1, j2 of them are of size

2, . . . , and jm of them of size m. Then,
∑m

ℓ=1 jℓ = j and
∑m

ℓ=1 ℓ jℓ = m, and

(19) =
∑
P

m∏
ℓ=1

[
Cℓ

(
n∑

i=1

(gk,r(Xi))
ℓ

)]jℓ
, (20)

with Cℓ := (−1)(ℓ−1) (ℓ− 1)!.
Note that the finite U -statistic can be expressed as

U
(n)
m,w,K = nm/2

(
n

m

)−1 ∑
1≤i1<···<im≤n

K∑
k=1

dq,k∑
r=1

wkψk,r(Xi1 , . . . ,Xim)

= nm/2

(
n

m

)−1 K∑
k=1

dq,k∑
r=1

wk

∑
1≤i1<···<im≤n

ψk,r(Xi1 , . . . ,Xim) =:

K∑
k=1

dq,k∑
r=1

wkW
(n)
m,k,r,

which by the kernel’s symmetry and (20),

W
(n)
m,k,r = nm/2

(
n

m

)−1

(m!)−1
∑
[n,m]

ψk,r(Xi1 , . . . ,Xim)

= An,m

∑
P
n−m/2

m∏
ℓ=1

[
Cℓ

(
n∑

i=1

(gk,r(Xi))
ℓ

)]jℓ

= An,m

∑
P

{
nP

(
m∏
ℓ=1

Cjℓ
ℓ

)(
n−1/2

n∑
i=1

gk,r(Xi)

)j1 m∏
ℓ=2

(
n−1

n∑
i=1

(gk,r(Xi))
ℓ

)jℓ
}
,

with An,m := nm
(n−m)!

n!
and nP := n−(m−j1−2j2−···−2jm)/2.

Now, we study W
(n)
m :=

(
W

(n)′
m,1, . . . ,W

(n)′
m,K

)′, with W
(n)
m,k :=

(
W

(n)
m,k,1, . . . ,W

(n)
m,k,dq,k

)′. In the

following, we denote a⊙ b = (a1b1, . . . , aDbD) for any a,b ∈ RD with D :=
∑K

k=1 dq,k. Thus,

W(n)
m = An,m

∑
P

{
nP

( m∏
ℓ=1

Cjℓ
ℓ

) (√
nTn,1

)j1 ⊙ m∏
ℓ=2

Tjℓ
n,ℓ

}

= An,m

[∑
P1,2

{
(−1)j2

(√
nTn,1

)j1 ⊙Tj2
n,2

}

+
∑
P>2

{
nP>2

( m∏
ℓ=1

Cjℓ
ℓ

) (√
nTn,1

)j1 ⊙ m∏
ℓ=2

Tjℓ
n,ℓ

}]
, (21)
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where Tn,ℓ := n−1
∑n

i=1 g(Xi)
ℓ with g defined in Lemma B.2,

∑
P1,2

denotes the sum over all the
partitions consisting solely of elements of size one and/or two, and

∑
P>2

over the rest of partitions.
In the second equality, note also that nP1,2 = 1. For each partition P1,2, we can compute the number
of partitions that have p pairs and m− 2p singletons, which allows writing

(21) = An,m

[⌊m/2⌋∑
p=0

{
(−1)pm!

2p (m− 2p)! p!

(√
nTn,1

)m−2p ⊙Tp
n,2

}

+
∑
P>2

{
nP>2

( m∏
ℓ=1

Cjℓ
ℓ

) (√
nTn,1

)j1 ⊙ m∏
ℓ=2

Tjℓ
n,ℓ

]
.

By Lemma B.2,
√
nTn,1 ⇝ ND(0, ID), and by WLLN and orthonormality of spherical harmonics,

Tn,2
P→ 1D. Then, by Slutsky’s Theorem, we have that the first sum in the right hand side converges

in distribution to Hm (Z), with Z ∼ ND (0, ID), by continuity of the transformation applied to both
vectors. Analogously, the second sum converges in probability to 0D, since m > j1+2j2+ · · ·+2jm
causing nP>2 → 0. Finally, consider the continuous function f : RD → R, such that f(x) :=∑K

k=1

∑dq,k
r=1wkxd(k,r) with d(k, r) :=

∑k−1
j=1 dq,j + r. Then, for the statistic U (n)

m,w,K = f(W
(n)
m ) we

apply the continuous mapping theorem, and part (i) follows.
The proof of part (ii) follows from Lemma B.3 noting that, for any k ≥ 1 and 1 ≤ r ≤ dq,k,

wk,r = 0 for all k ̸= (k, . . . , k) or r ̸= (r, . . . , r), and since nk,r(k, r) = m for k = (k, . . . , k) and
r = (r, . . . , r).

Proof of Theorem 4.1. Let ϕ(n)m,w,K , ϕ(n)m,w, ϕ∞m,w,K , and ϕ∞m,w denote the characteristic functions
of U (n)

m,w,K , U (n)
m,w, U∞

m,w,K , and U∞
m,w, respectively, and let Wm,k,r the U -statistic associated to ψk,r

(see definition in Lemma B.4). The idea of the proof is to show that ϕ(n)m,w(t) → ϕ∞m,w(t) for all t ∈ R
by showing that for all ϵ > 0∣∣ϕ(n)m,w(t)− ϕ∞m,w(t)

∣∣ ≤ ∣∣ϕ(n)m,w(t)− ϕ
(n)
m,w,K(t)

∣∣+ ∣∣ϕ(n)m,w,K(t)− ϕ∞m,w,K(t)
∣∣

+
∣∣ϕ∞m,w,K(t)− ϕ∞m,w(t)

∣∣ < ϵ, (22)

for all n ≥ N by choosing an N large enough to make the right-hand side terms arbitrarily small.
Let ϵ > 0. We first show that the sequence

(
U

(n)
m,w,K

)∞
K=1

is a uniformly (on n) Cauchy sequence
in the Hilbert space L2(Ω) := {X : Ω → R :

∫
X(ω)2 dP (ω) < ∞}, where (Ω,A,P) denotes the

common probability space of the random variables X1, . . . ,Xn. Let L2 > L1 ≥ 1, then,

E
[(
U

(n)
m,w,L2

− U
(n)
m,w,L1

)2]
= E

( L2∑
k=L1+1

dq,k∑
r=1

wkW
(n)
m,k,r

)2


=

L2∑
k,ℓ=L1+1

dq,k∑
r=1

dq,ℓ∑
s=1

wk wℓ E
[
W

(n)
m,k,rW

(n)
m,ℓ,s

]

= An,m

L2∑
k,ℓ=L1+1

dq,k∑
r=1

dq,ℓ∑
s=1

wk wℓ δkℓ δrs

= An,m

L2∑
k=L1+1

w2
k dq,k,

with An,m := nm
(
n
m

)−1, where in the third equality we used Lemma B.4. By the square summability
of w, there exists some K ≥ 1 such that for all L1, L2 ≥ K,
E
[(
U

(m)
m,w,L2

− U
(m)
m,w,L1

)2]
< ϵ/3.

30



Note that

∂

∂n
(An,m) = nm−1Γ (m+ 1)Γ (n+ 1−m)

Γ (n+ 1)

(
m + n

(
ψ(0)(n−m+ 1)− ψ(0) (n+ 1)

))
,

which, by the strict monotonicity of the digamma function, ψ(0)(x−m)−ψ(0)(x) < 0 for all m ≥ 2
and x > m, and therefore, An+1,m < An,m for all n > m. Thus, E

[(
U

(n)
m,w,L2

−U (n)
m,w,L1

)2]
< ϵ/3 for

all n > m. By completeness of L2(Ω),
(
U

(n)
m,w,K

)∞
K=1

converges to some unique limit, U (n)
m,w, in L2(Ω)

uniformly on n > m. Finally, since∣∣ϕ(n)m,w(t)− ϕ
(n)
m,w,K(t)

∣∣ = ∣∣∣E[eitU(n)
m,w − eitU

(n)
m,w,K

]∣∣∣ ≤ E

[∣∣eit(U(n)
m,w−U

(n)
m,w,K

)
− 1
∣∣]

≤ E
[
|t|
∣∣U (n)

m,w − U
(n)
m,w,K

∣∣] ≤ |t|
(
E
[(
U (n)
m,w − U

(n)
m,w,K

)2])1/2
,

there exists a K0 ≥ 1 such that, for all K ≥ K0,
∣∣ϕ(n)m,w(t)−ϕ(n)m,w,K(t)

∣∣ < ϵ/3 uniformly for all n > m.
Secondly, we prove the sequence

(
U∞
m,w,K

)∞
K=1

is Cauchy in L2(Ω). By Lemma B.5, we have

E
[(
U∞
m,w,L2

− U∞
m,w,L1

)2]
= E

 L2∑
k,ℓ=L1+1

dq,k∑
r=1

dq,ℓ∑
s=1

wk wℓHm(Zk,r)Hm(Zℓ,s)


=

L2∑
k=L1+1

dq,k∑
r=1

w2
kE
[
H2

m(Zk,r)
]

= m!

L2∑
k=L1+1

w2
k dq,k.

Then, by square summability assumption of w, there exists a K ≥ 1 such that for all L1, L2 ≥ K,
E
[(
U∞
m,w,L2

− U∞
m,w,L1

)2]
< ϵ/3. By completeness of L2(Ω), U∞

m,w,K converges in L2(Ω) to some
unique limit, U∞

m,w. Convergence in mean square implies convergence in distribution, and therefore
the convergence of the corresponding characteristic functions by the continuity theorem. Thus, there
exists a K1 ≥ 1 such that, for all K ≥ K1,

∣∣ϕ∞m,w,K(t)− ϕ∞m,w(t)
∣∣ < ϵ/3.

Thirdly, for a given K ≥ 1, by Proposition 4.1(i) and the continuity theorem of characteristic
functions, there exists an N ≥ 1, such that for all n ≥ N ,

∣∣ϕ(n)m,w,K(t)− ϕ∞m,w,K(t)
∣∣ < ϵ/3.

Therefore, choosing a K ≥ max {K0,K1}, for all n ≥ max{m+ 1, N},
∣∣ϕ(n)m,w(t)− ϕ∞m,w(t)

∣∣ < ϵ
in (22), and (10) follows.

Proof of Theorem 4.2. Since (12) holds by assumption, V (n)
m,w can be expressed in the form of (11).

Now, consider m even. Let L(n)
m,w,K , L(n)

m,w, L∞
m,w,K , and L∞

m,w be the distribution of V (n)
m,w,K , V (n)

m,w,
V∞
m,w,K , and V∞

m,w, respectively. Following Definition 6.8 together with Theorem 6.9 in Villani (2009),

for proving weak convergence L(n)
m,w → L∞

m,w it suffices to show Wp

(
L(n)
m,w,L∞

m,w

)
→ 0 as n→ ∞ for

some p ≥ 1, where Wp (µ, ν) is the Wasserstein distance of order p between distributions µ and ν,
and is given by

Wp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
R
|x− y|p dπ(x, y)

)1/p

,

where Π(µ, ν) is the set of all couplings between ν and µ.
The proof relies on

Wp

(
L(n)
m,w,L∞

m,w

)
≤Wp

(
L(n)
m,w,L

(n)
m,w,K

)
+Wp

(
L(n)
m,w,K ,L

∞
m,w,K

)
+Wp

(
L∞
m,w,K ,L∞

m,w

)
, (23)
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and proving that we can choose an N large enough so that the three right-hand terms are arbitrarily
close to zero.

Let ϵ > 0. We first show that for a sufficiently large N0, there exists a K0 such that for all
K > K0, supn≥N0

W1

(
L(n)
m,w,L(n)

m,w,K

)
< ϵ/3. Using the specific coupling π induced by the data

generation process, we readily have

sup
n≥N0

W1

(
L(n)
m,w,L

(n)
m,w,K

)
≤ sup

n≥N0

E
[
|V (n)

m,w − V
(n)
m,w,K |

]
.

Using the monotone convergence theorem since m is even and w is nonnegative,

E
[
|V (n)

m,w − V
(n)
m,w,K |

]
= E

 ∞∑
k=K+1

wk

dq,k∑
r=1

(
n−1/2

n∑
i=1

gk,r(Xi)

)m


=

∞∑
k=K+1

wk

dq,k∑
r=1

E

[(
n−1/2

n∑
i=1

gk,r(Xi)

)m]
. (24)

By Lemma B.7, there exists an N0 > m independent of k such that for all n ≥ N0,

(24) ≤ 2
∞∑

k=K+1

wk

dq,k∑
r=1

(
m!

(m/2)! 2m/2
+ n−1

∑
α∈A

cα<m/2

ncα−m/2+1Cα

n∏
i=1

ek,r,αi

)
.

Using Lemma 4.1, among all possible configurations α ∈ A, since λq(a + b) > λq(a) + λq(b) for all
integers a, b > 1 and every dimension q ≥ 1, the one that constrains the bound is α∗ = (0, . . . , 0,m),
hence for any α ̸= α∗,

∏n
i=1 ek,r,αi

≤ Amk
λq(m), Am ∈ R, for all k ≥ K∗, K∗ being sufficiently large,

and we obtain

2
∞∑

k=K∗+1

wk

dq,k∑
r=1

(
m!

(m/2)! 2m/2
+ n−1

∑
α∈A

cα<m/2

ncα−m/2+1Cα

n∏
i=1

ek,r,αi

)

≤ 2
∞∑

k=K∗+1

wk

dq,k∑
r=1

(
m!

(m/2)! 2m/2
+ n−1Am

∑
α∈A

cα<m/2

ncα−m/2+1Cα k
λq(m)

)

= 2

∞∑
k=K∗+1

wk dq,k

(
m!

(m/2)! 2m/2
+ n−1AmDn,m k

λq(m)

)

=
2m!

(m/2)! 2m/2

∞∑
k=K∗+1

wk dq,k + 2n−1AmDn,m

∞∑
k=K∗+1

wk dq,kk
λq(m)

≤ 2m!

(m/2)! 2m/2

∞∑
k=K∗+1

wk dq,k + 4n−1AmDn,m

∞∑
k=K∗+1

wk k
(q−1)+λq(m),

with Dn,m :=
∑

α∈A
cα<m/2

ncα−m/2+1Cα = O(1), where in the last inequality we used dq,k ∼ kq−1,

with ∼ denoting asymptotic equivalence.
Since

∑∞
k=1wk d

(m+1)/2
q,k <∞ implies

∑∞
k=1wk dq,k < ∞ for m > 2, then there exists a K0 such

that for all K ≥ K0, E
[
|V (n)

m,w − V
(n)
m,w,K |

]
< ϵ/3 for all n ≥ N0, since the second right-hand side sum

is scaled by n−1.
Secondly, Theorem 6.9 in Villani (2009) states thatW1

(
L(n)
m,w,K ,L∞

m,w,K

)
→ 0 if L(n)

m,w,K converges
weakly to L∞

m,w,K in the Wasserstein space of order one, which, according to Definition 6.8 in ibid,
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occurs if L(n)
m,w,K → L∞

m,w,K and E
[
|V (n)

m,w,K |
]
→ E

[
|V∞

m,w,K |
]
. For a given K, weak convergence of

distributions holds from Proposition 4.1(ii) while the second condition, since m is even,

E
[
|V (n)

m,w,K |
]
= E

[
V

(n)
m,w,K

]
= E

[
n−m/2

K∑
k=1

dq,k∑
r=1

wk

(
n∑

i=1

gk,r(Xi)

)m]

=

K∑
k=1

wk

dq,k∑
r=1

E

[(
n−1/2

n∑
i=1

gk,r(Xi)

)m]
,

and using Lemma B.7,

E
[
|V (n)

m,w,K |
]
→

K∑
k=1

wkdq,k
m!

2m/2 (m/2)!
= E

[
|V∞

m,w,K |
]

holds. Consequently, there is an N1 such that for all n ≥ N1,

W1

(
L(n)
m,w,K ,L

∞
m,w,K

)
<
ϵ

3
.

Thirdly, we consider the specific coupling π between L∞
m,w and L∞

m,w,K such that the set of iid nor-
mal random variables {Zk,r} is common for both distributions, that is, L∞

m,w,K
d
=
∑K

k=1

∑dq,k
r=1wkZ

m
k,r,

and L∞
m,w

d
=
∑K

k=1

∑dq,k
r=1wkZ

m
k,r +

∑∞
k=K+1

∑dq,k
r=1wkZ

m
k,r. We have that, because m is even and from

the summability condition (12),

W1

(
L∞
m,w,K ,L∞

m,w

)
≤ E

[∣∣V∞
m,w,K − V∞

m,w

∣∣] = E

[∣∣∣∣∣
∞∑

k=K+1

dq,k∑
r=1

wkZ
m
k,r

∣∣∣∣∣
]

=
m!

2m/2(m/2)!

∞∑
k=K+1

wk dq,k <
ϵ

3

for every K ≥ K1, with K1 sufficiently large.
Thus, choosing a K ≥ max{K0,K1}, for all n ≥ max {N0, N1}, W1

(
L(n)
m,w,L∞

m,w

)
< ϵ in (23),

and (13) follows.

A.3 Proofs of Section 5

Proof of Proposition 5.1. Let k ≥ 1, 1 ≤ r ≤ dq,k, and Tn,k,r,ℓ := n−1
∑n

i=1 gk,r(Xi)
ℓ for ℓ ≥ 1. Let

K be any integer such that K > min{k : (k, r) ∈ S̸=}.
For the V -statistic, since (12) is met, m is even, and wk > 0 for all k ≥ 1, we have

V (n)
m,w ≥ V

(n)
m,w,K =

K∑
k=1

dq,k∑
r=1

wk(
√
nTn,k,r,1)

m

=
∑

(k,r)∈S ̸=
k≤K

wk(
√
nTn,k,r,1)

m +
∑

(k,r)/∈S ̸=
k≤K

wk(
√
nTn,k,r,1)

m =: An,m,w,K +Bn,m,w,K

Note that An,m,w,K
P→ +∞ since each term of the finite sum (

√
nTn,k,r,1)

m P→ +∞, due to Lemma B.9
cases (i) and (iii), and since m is even. For Bn,m,w,K , since the associated coefficients hk,r = 0, by
Lemma B.9 part (ii), Bn,m,w,K = OP(1) since it is a finite sum.

Therefore, V (n)
m,w ≥ V

(n)
m,w,K

P→ +∞, and cases (i) and (ii) are proven for V -statistics.
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For U -statistics, we first show that if hk,r ̸= 0, W (n)
m,k,r

P→ +∞, with W
(n)
m,k,r as defined in the

Proof of Proposition 4.1. From (21),

W
(n)
m,k,r = An,m

[⌊m/2⌋∑
p=0

{
(−1)pm!

2p (m− 2p)! p!

(√
nTn,k,r,1

)m−2p
T p
n,k,r,2

}

+
∑
P>2

{
nj1/2nP>2 (Tn,k,r,1)

j1
m∏
ℓ=2

(CℓTn,k,r,ℓ)
jℓ

}]

= An,m

[(√
nTn,k,r,1

)m
+

⌊m/2⌋∑
p=1

{
(−1)pm!

2p (m− 2p)! p!

(√
nTn,k,r,1

)m−2p
T p
n,k,r,2

}

+
∑
P>2

{
nj−m/2 (Tn,k,r,1)

j1
m∏
ℓ=2

(CℓTn,k,r,ℓ)
jℓ

}]
=: An,m (Cn,m,k,r +Dn,m,k,r + En,m,k,r) ,

where in the second equality j =
∑m

ℓ=1 jℓ denotes the number of elements in the corresponding
partition P>2. Now, note that nj1/2nP>2 = n−m/2+j1+j2+···+jm = nj−m/2 = O(nm/2−1), since j < m,
because the only partition with m elements is the one with all singletons. Also, Tn,k,r,ℓ

P→ ek,r,ℓ with
ek,r,ℓ := EH

[
gℓk,r(X1)

]
. Thus, En,m,k,r = OP(n

m/2−1) andDn,m,k,r = OP(n
m/2−1). For the first term,

note that m is even, and using Lemma B.9 parts (i) and (iii), we can conclude that Cn,m,k,r
P→ +∞

and Cn,m,k,r = OP(n
m/2). Recall that An,m = nm(n−m)!/n! → 1, therefore, W (n)

m,k,r
P→ +∞.

Now, since wk > 0 for all k ≥ 1, and with the assumption that S̸= is finite, we have

U (n)
m,w = nm/2

(
n

m

)−1 ∑
1≤i1<···<im≤n

∞∑
k=1

dq,k∑
r=1

wkψk,r(Xi1 , . . . ,Xim)

=
∑

(k,r)∈S̸=

wkW
(n)
k,r +

∑
(k,r)/∈S ̸=

wkW
(n)
k,r . (25)

The first term diverges to +∞ in probability since it is a finite sum. The second term is OP(1),
since the associated coefficients hk,r = 0, and, thus, it can be shown to converge in distribution
given the square summability of coefficients and case (ii) of Lemma B.9, following an analogous
proof as in Theorem 4.1. Therefore, U (n)

m,w
P→ +∞, and (iii) is proven. For (i), both sums in (25) are

finite, where the second term converges in distribution following an analogous proof as in Proposi-
tion 4.1(i), and the result for finite U -statistics is proven.

Remark A.1. The behavior of U (n)
m,w under an alternative H such that S̸= is not finite requires ad-

ditional technical assumptions to (i) allow the rearrangement in (25), in particular, absolute summa-
bility is required, for which condition (12) on the weights w would suffice; and (ii) to ensure some
terms in the first series of (25) are controlled, since the infinite sum of terms diverging in probability
to +∞ is not guaranteed to diverge in probability to +∞.

Proof of Proposition 5.2. The proof of part (i) follows from Lemma B.10 and applying the con-
tinuous mapping theorem as in Proposition 4.1(i). The proof of part (ii) follows from Lemma B.10,
applying the continuous mapping theorem as in Lemma B.3, and noting that, for any k ≥ 1 and
1 ≤ r ≤ dq,k, wk,r = 0 for all k ̸= (k, . . . , k) or r ̸= (r, . . . , r), and since nk,r(k, r) = m for
k = (k, . . . , k) and r = (r, . . . , r).
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Proof of Proposition 5.3. In this proof, we put Supp(w) := {k : wk ̸= 0}. First, consider part (i).
Following the proof of Proposition 4.1(i), we have that

U
(n)
m,w,K =

K∑
k=1

dq,k∑
r=1

wkW
(n)
m,k,r =

K∑
k=kw

dq,k∑
r=1

wkW
(n)
m,k,r

which by the kernel symmetry and (20),

W
(n)
m,k,r = An,m

∑
P

{
nP

(
m∏
ℓ=1

Cjℓ
ℓ

)(
n−1/2

n∑
i=1

gk,r(Xi)

)j1 m∏
ℓ=2

(
n−1

n∑
i=1

(gk,r(Xi))
ℓ

)jℓ
}
.

Now, still as in the proof of Proposition 4.1(i), we have

W(n)
m = An,m

[∑
P1,2

{
(−1)j2

(√
nTn,1

)j1 ⊙Tj2
n,2

}

+
∑
P>2

{
nP>2

( m∏
ℓ=1

Cjℓ
ℓ

) (√
nTn,1

)j1 ⊙ m∏
ℓ=2

Tjℓ
n,ℓ

}]
. (26)

Decomposing √
nTn,1 =

√
n(Tn,1 − E [Tn,1]) +

√
nE [Tn,1]

it follows directly from Proposition 5 in García-Portugués et al (2025) that
√
n(Tn,1 − E [Tn,1]) is

asymptotically standard normal under P
(n)
κn,f

(which also holds under an arbitrary location µ ∈ Sq
different than e1 := (1, 0, . . . , 0)′). It only remains to prove that under P

(n)
κn,f

,

√
nE [gk(X1)] =

mk,k∗ f
k∗(0) τk∗

aq,k (k∗!)
gk(µ)1{k∼k∗,k†≤k≤k∗} + o(1). (27)

This follows from Lemma B.11 together with Proposition 4 in García-Portugués et al (2025), which
also holds for an arbitrary µ ∈ Sq, and noting that aq,k = hq,k(1) t

2
q,k, with tq,k =

√
2 · 1{q=1} +

(1 + 2k/(q − 1)) /
√
dq,k · 1{q>1}.

It follows that
√
nTn,1 is OP(1) as n → ∞ under P

(n)
κn,f

. As a result, the second term in (26)
is oP(1), and (i) directly follows from (27) and the continuous mapping theorem as in the proof of
Proposition 4.1(i).

The proof of part (ii) follows the same decomposition of
√
nTn,1 as in the proof of part (i),

and applies the continuous mapping theorem as in Lemma B.3, noting that, for any k ≥ 1 and
1 ≤ r ≤ dq,k, wk,r = 0 for all k ̸= (k, . . . , k) or r ̸= (r, . . . , r), and that nk,r(k, r) = m for
k = (k, . . . , k) and r = (r, . . . , r).

A.4 Proofs of Section 7

Proof of Lemma 7.1. Note that in the case q = 1, Φm,δℓ(θ) =
∑dq,ℓ

r=1 ψℓ,r(X1, . . . ,Xm), and consider
it in the form obtained in Lemma B.1. Since a rotated point, Ox, in S1 can be represented in polar
coordinates as θ + α, with α ∈ (0, 2π], the first equality holds. Let Im := {−1, 1}m. For m odd,∫ 2π

0
Φm,δℓ(θ +α) dα = 2(1−m)/2

∑
e∈Im

∫ 2π

0
cos
(
ℓe′(θ +α)− µe

)
dα

= 2(1−m)/2
∑
e∈Im

∫ 2π

0
cos
(
ℓseα+ ℓe′θ − µe

)
dα. (28)
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Note that since m is odd, se ̸= 0 for all e ∈ Im, thus,

(28) =
2(1−m)/2

ℓ

∑
e∈Im

1

se

[
sin
(
ℓαse + ℓe′θ − µe

)]2π
0

= 0,

where last equality holds for all ℓ ∈ Z.
For m even, letting Sm := {1} × Im−1, we have∫ 2π

0
Φm,δℓ(θ +α) dα = 21−m/2

∑
e∈Sm

∫ 2π

0

(
1 + (−1)m/2pe

)
cos
(
ℓe′θ + ℓαse

)
dα. (29)

In this case, there is some e ∈ Sm, such that se = 0, hence,

(29) = 21−m/2
∑
e∈Sm
se=0

∫ 2π

0

(
1 + (−1)m/2pe

)
cos
(
ℓe′θ

)
dα.

Note that for m ∈ 4Z, the leading term within the integral is 0 for all e such that pe = −1, and,
analogously, when pe = 1 for m ∈ 2Z \ 4Z. However, noting that the sum is over any e such that
se = 0, this latter condition already implies the product condition for each case, and (18) follows.

Proof of Proposition 7.1. The proof uses the following integrals for k1, ℓ ≥ 1 integers, e :=
(e1, . . . , em)′ ∈ {−1, 1}m, θ := (θ1, . . . , θm)′ ∈ (0, 2π]m, and denoting e−1 := (e2, . . . , em)′, and
θ−1 := (θ2, . . . , θm)′, ∫ 2π

0
cos
(
ℓe′θ

)
cos(k1θ1) dθ1 = π cos

(
ℓe′−1θ−1

)
δk1ℓ (30)∫ 2π

0
sin
(
ℓe′θ

)
cos (k1θ1) dθ1 = π sin

(
ℓe′−1θ−1

)
δk1ℓ (31)∫ 2π

0
cos
(
ℓe′θ

)
sin(k1θ1) dθ1 = −e1π sin

(
ℓe′−1θ−1

)
δk1ℓ (32)∫ 2π

0
sin
(
ℓe′θ

)
sin (k1θ1) dθ1 = e1π cos

(
ℓe′−1θ−1

)
δk1ℓ (33)

Letting g̃k,1(θ) = cos kθ and g̃k,2(θ) = sin kθ, the basis coefficients are obtained by

uk,r = (2π)−m
∫
(S1)m

Φ̃m,δℓ(θ) gk1,r1(θ1) · · · gkm,rm(θm) dθ1 · · · dθm

= 22−mπ−m
∑

e∈Sm,0

∫
(S1)m

cos
(
ℓe′θ

)
g̃k1,r1(θ1) · · · g̃km,rm(θm) dθ1 · · · dθm.

For k ̸= (ℓ, . . . , ℓ) and any r, we have uk,r = 0 by orthogonality (30–33), and (i) follows.
On the one hand, for (ii), given S is odd, the basis function

∏m
j=1 g̃kj ,rj consists of an odd number

of sin(kj θj). Note that when iteratively integrating, a basis term of the form cos(kj θj) will result in
the same trigonometric function type it is applied to, (30) and (31). In contrast, a term of sin(kj θj)
will yield the cosine function if applied to sine and the other way around, (32) and (33). Therefore,
an odd S will result in evaluating sin 0 = 0.

On the other hand, if S is even, the basis function has an even number of sin(kj θj) terms, which
results in evaluating cos 0 = 1, and the integral is not null. For each pair of sin(kj θj) evaluated,
a −1 term is added from (32), and the element ej results after each integral involving a sin(kj θj)
term. Thus, we have

uk,r = 22−m (−1)S/2
∑

e∈Sm,0

S∏
j=1

eij ,
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with (i1, . . . , iS) being the index of the elements of r equal to 1.
Then, denoting the cardinality of a setA by #A, we have for S = m, uk,r = 22−m(−1)m/2

∑
e∈Sm,0

pe

= 22−m(−1)m
∑

e∈Sm,0
1 = 22−m#Sm,0, since for every element e ∈ Sm,0, pe = (−1)m/2, and for

S = 0, we immediately obtain the same result. Note that #Sm,0 =
(
m−1
m/2

)
.

For 0 < S < m,
∏S

j=1 eij equals either +1 or −1. Let n+ be the number of elements e in Sm,0

such that
∏S

j=1 eij = 1. Then,
∑

e∈Sm,0

∏S
j=1 eij = 2n+ −#Sm,0. Given that S is even, n+ can be

computed, first assuming ij ̸= 1 for all 1 ≤ j ≤ S. In this case, an even number t of (−1) terms must
be placed on S spots, and for each such combination, we place the m/2− t remaining (−1) elements
inm−1 spots, therefore n+ =

∑
t∈2Z

(
S
t

)(
m−1−S
m/2−t

)
. In the case of assuming ij = 1 for some 1 ≤ j ≤ S,

an even number t of (−1) terms must be placed in S−1 spots, and for each of those combinations, the
remaining m/2− t (−1) elements are placed on m−S spots, thus n+ =

∑
t∈2Z

(
S−1
t

)(
m−S
m/2−t

)
. These

two expressions, A :=
∑

t∈2Z
(
S
t

)(
m−1−S
m/2−t

)
and B :=

∑
t∈2Z

(
S−1
t

)(
m−S
m/2−t

)
are equivalent considering S

is even, the reason is that 2A and 2B both count the number of elements in {e ∈ {−1, 1}m : se = 0}
such that

∏S
j=1 eij = 1, where 0 ≤ ij ≤ m for all 1 ≤ j ≤ S and ij ̸= ik for all j ̸= k, and (iii)

follows.

Proof of Proposition 7.2. This result is a direct application of Lemma B.3.

B Technical Lemmas

B.1 Lemmas of Section 3

The following lemma is required for proving Proposition 3.1. It finds an expression of a kernel with a
sparse sequence of weights, wk = δkℓ (non-zero only at k = ℓ), which immediately includes Rayleigh
(ℓ = 1) and Bingham (ℓ = 2) statistics.

Lemma B.1. Let m ≥ 2 and ℓ ≥ 1. Let θ := (θ1, . . . , θm)′ be the polar angles of each element in
(X1, . . . ,Xm)′, and let Φm,δℓ(θ) := Φw(X1, . . . ,Xm) with w = {δkℓ}∞k=1. Then,

Φm,δℓ(θ) = 2−m/2

{√
2
∑

e∈Im cos (ℓe′θ − µe) , m odd,
2
∑

e∈{1}×Im−1

(
1 + (−1)m/2pe

)
cos (ℓe′θ) , m even,

(34)

where Im := {−1, 1}m, pe :=
∏m

i=1 ei with e = (e1, . . . , em)′, and µe := tan−1
(
(−1)⌊m/2⌋pe

)
.

Proof of Lemma B.1. Notice that in S1, gk,1(x) =
√
2 cos(kθ) and gk,2(x) =

√
2 sin(kθ) for k ≥ 1.

Using the product-to-sum trigonometric identities,

m∏
j=1

cos θj = 2−m
∑
e∈Im

cos(e′θ) and

m∏
j=1

sin θj = 2−m (−1)⌊
m
2 ⌋
{∑

e∈Im cos(e′θ)pe, m even,∑
e∈Im sin(e′θ)pe, m odd,

and the linear combination of sinusoidal functions

a cos θ + b sin θ =
√
a2 + b2 cos(θ + tan−1(−b/a)), a > 0,

we have that Φm,δℓ(θ) =
∏m

j=1 gℓ,1(Xj) +
∏m

j=1 gℓ,2(Xj) results in (34).
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B.2 Lemmas of Section 4

The null asymptotic results rely on the asymptotic standard normality of the normalized average
of a vector of spherical harmonics of degree lower or equal to K evaluated on the sample given
by Lemma B.2. Lemma B.3 gives the asymptotic distribution of a finite general V -statistic, which
immediately yields the limit of m-points V -statistics. Lemmas B.4–B.5 are used for the convergence
of infinite U -statistics. Finally, Lemma B.7 is a technical result needed for the convergence of infinite
V -statistics, and needs Lemma B.6, which gives the expectation of powers of spherical harmonics.

Lemma B.2. Let q ≥ 1, K ≥ 1, gk : Sq → Rdq,k for k ≤ K and g : Sq → RD be defined as
gk := (gk,1, . . . , gk,dq,k)

′, and g := (g′
1, . . . ,g

′
K)′, with D :=

∑K
k=1 dq,k. Then, under H0 and as

n→ ∞,

n−1/2
n∑

i=1

g(Xi)⇝ ND(0, ID). (35)

Proof of Lemma B.2. Since {Xi}ni=1 are iid, {g(Xi)}ni=1 is a sequence of iid vectors. Under H0,
due to the orthonormality of spherical harmonics, we have E [g(X1)] = 0, and E [g(X1)g(X1)

′] = ID
since Cov [gk,r(X1), gℓ,s(X1)] = δkℓδrs for all k, ℓ ≥ 1, 1 ≤ r ≤ dq,k, 1 ≤ s ≤ dq,ℓ. Thus, by the
multivariate central limit theorem, (35) follows.

Lemma B.3. Let q ≥ 1, K ≥ 1, m ≥ 2, w be a real sequence, and V
(n)
n,m,K be a K-finite general

V -statistic given by

V
(n)
n,m,K := n−m/2

n∑
i1,...,im=1

K∑
k1,...,km=1

∑
r

wk,r gk1,r1(Xi1) · · · gkm,rm(Xim).

Let nk,r(k′, r′) :=
∑m

i=1 1{ki=k′, ri=r′}. Then, under H0 and as n→ ∞,

V
(n)
m,w,K ⇝ V∞

m,w,K :=
K∑

k1,...,km=1

∑
r

wk,r

K∏
k′=1

dq,k′∏
r′=1

Z
nk,r(k

′,r′)
k′,r′ ,

with {Zk,r : k ≥ 1, 1 ≤ r ≤ dq,k} being a collection of independent standard normal random variables.

Proof of Lemma B.3. Note that V (n)
m,w,K can be rewritten as

V
(n)
m,w,K =

K∑
k1,...,km=1

∑
r

wk,r

{
n−m/2

n∑
i1,...,im=1

gk1,r1(Xi1) · · · gkm,rm(Xim)

}

=

K∑
k1,...,km=1

∑
r

wk,r

(
n−1/2

n∑
i=1

gk1,r1(Xi)

)
· · ·

(
n−1/2

n∑
i=1

gkm,rm(Xi)

)
.

Consider the continuous function f : RD → R, with D :=
∑K

k=1 dq,k, given by f(x) :=∑K
k1,...,km=1

∑
rwk,r

∏m
j=1 xpj with pj :=

∑kj−1
k=1 dq,k+rj . Then, we have V (n)

m,w,K = f
(
n−1/2

∑n
i=1 g(Xi)

)
with g : Sq → RD as defined in Lemma B.2, and applying this lemma and the continuous mapping
theorem, the result is proven.

Lemma B.4. Let q ≥ 1, k ≥ 1, 1 ≤ r ≤ dq,k, m ≥ 2 and

Wm,k,r := nm/2

(
n

m

)−1 ∑
1≤i1<···<im≤n

ψk,r(Xi1 , . . . ,Xim).
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Then, under H0,

E
[
W

(n)
m,k,rW

(n)
m,ℓ,s

]
= nm

(
n

m

)−1

δkℓ δrs.

Proof of Lemma B.4. Theorem 2 in Section 1.4 of Lee (1990) gives the covariance of two
U -statistics. Let σ2c,c := Cov [ψc,k,r(X1, . . . ,Xc), ψc,ℓ,s(X1, . . . ,Xc)] where ψc,k,r (x1, . . . ,xc) :=
E [ψk,r (x1, . . . ,xc,Xc+1, . . . ,Xm)] for c ≤ m. Thus,

Cov
[
W

(n)
m,k,r,W

(n)
m,ℓ,s

]
= nm

(
n

m

)−1 m∑
c=1

(
m

c

)(
n−m

m− c

)
σ2c,c. (36)

For any c < m,

ψc,k,r (x1, . . . ,xc) =
c∏

i=1

gk,r(xi)
m∏

j=c+1

E [gk,r(Xj)] ,

and for c = m,

ψm,k,r (x1, . . . ,xm) = ψk,r (x1, . . . ,xm) .

Under H0, by orthonormality, σ2c,c = δcm δkℓ δrs, and together with (36), the result follows noting
E
[
W

(n)
m,k,r

]
= 0.

Lemma B.5. Let m ≥ 2, Hm be the mth order Hermite polynomial, and Z1, Z2 be two independent
standard normal random variables. Let Xi = Zi + µi with µi ∈ R for i = 1, 2. Then,

E [Hm(X1)Hm(X2)] = (µ1µ2)
m and E

[
Hm(X1)

2
]
=

m∑
c=0

(
m

c

)2

c!µ
2(m−c)
1 .

Proof of Lemma B.5. Using the addition formula Hm(x+ y) =
∑m

c=0

(
m
c

)
Hc(x)y

m−c,

E [Hm(X1)Hm(X2)] = E [Hm(Z1 + µ1)Hm(Z2 + µ2)]

=

∫
R2

1

2π
Hm(z + µ1)Hm(t+ µ2) e

−z2/2 e−t2/2 dz dt

=

∫
R
Hm(z + µ1)

e−z2/2

√
2π

dz

∫
R
Hm(t+ µ2)

e−t2/2

√
2π

dt = (µ1µ2)
m ,

and

E
[
Hm(X1)

2
]
= E

[
Hm(Z1 + µ1)

2
]

=

∫
R
Hm(z + µ1)Hm(z + µ1)

e−z2/2

√
2π

dz

=
m∑
c=0

m∑
ℓ=0

(
m

c

)(
m

ℓ

)
µm−c
1 µm−ℓ

1

∫
R
Hc(z)Hℓ(z)

e−z2/2

√
2π

dz

=
m∑
c=0

(
m

c

)2

c!µ
2(m−c)
1 .
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Lemma B.6. Let q ≥ 1, k ≥ 1, 1 ≤ r ≤ dq,k, rq,k :=
(
k+q−2
q−2

)
, and ℓ be a nonnegative integer. Let

ek,r,ℓ := E
[
gℓk,r(X)

]
. If X ∼ νq, then, the following statements hold:

(i) If q = 1, ek,r,ℓ =

0, if ℓ is odd,

2ℓ/2
(ℓ− 1)!!

ℓ!!
, if ℓ is even.

(ii) If q ≥ 2, then:

(a) ek,r,1 = 0 and ek,r,2 = 1, for k ≥ 1;

(b) ek,r,2ℓ+1 = 0 for k odd;

(c) ek,r,2ℓ+1 = 0 for k even and ((r > rq,k) ∨ (mr is such that ∃j ≤ q − 1 : mj is odd)), with
the corresponding mr given in Section 2.

Proof of Lemma B.6. To prove part (i), recall that for q = 1, d1,k = 2, gk,1(x) =
√
2 cos (kθ),

and gk,2(x) =
√
2 sin (kθ). Using Expression 3.621.3 of Zwillinger et al. (2014) in

ek,1,ℓ =
2ℓ/2−1

π

∫ 2π

0
cosℓ(u) du, and ek,2,ℓ =

2ℓ/2−1

π

∫ 2π

0
sinℓ(u) du,

proves the result.
For part (ii), the orthonormality of the spherical harmonics yields (a). For part (b), since gk,r is

a homogeneous polynomial of degree k, it follows that for odd k, gk,r(−x) = −gk,r(x) for all x ∈ Sq.
Let Sq− := {x ∈ Sq : x1 < 0} and Sq+ := {x ∈ Sq : x1 ≥ 0}, then,

ek,r,2ℓ+1 =
1

ωq

(∫
Sq−

(−gk,r(−x))2ℓ+1 dσq(x) +

∫
Sq+
g2ℓ+1
k,r (x) dσq(x)

)

=
1

ωq

(
−
∫
Sq+
g2ℓ+1
k,r (x) dσq(x) +

∫
Sq+
g2ℓ+1
k,r (x) dσq(x)

)
= 0.

For part (c), integrating in hyperspherical coordinates defined in (3) and using the definition of
gk,r(x) gives

ek,r,2ℓ+1 =

∫
Sq
g2ℓ+1
k,r (x) νq (dx)

=
1

ωq

∫ 2π

0

∫ π

0

(q−1)
···

∫ π

0

(√
Bmr ζmr (θ1)

q−1∏
j=1

(sin θq−j+1)
|mj+1

r |Cλj
mj (cos θq−j+1)

)2ℓ+1

×
q∏

k=2

sink−1 θk dθq · · · dθ2 dθ1

=
B

ℓ+1/2
mr

ωq

∫ π

0

(q−1)
···

∫ π

0

[∫ 2π

0
ζ2ℓ+1
mr

(θ1) dθ1

]
×

q−1∏
j=1

(sin θq−j+1)
(2ℓ+1)|mj+1

r |
(
C

λj
mj (cos θq−j+1)

)2ℓ+1
q∏

k=2

sink−1 θk dθq · · · dθ2.

Note that ζmr(s) depends specifically on mq+1 ∈ {0, 1}. If mq+1 = 0 and mq > 0, Eq. 2.513.4 in
Zwillinger et al. (2014) gives∫ 2π

0
ζ2ℓ+1
mr

(θ1) dθ1 =

∫ 2π

0
cos2ℓ+1 (mqθ1) dθ1 = 0, (37)
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and if mq+1 = 1, Eq. 2.513.2 yields∫ 2π

0
ζ2ℓ+1
mr

(θ1) dθ1 =

∫ 2π

0
sin2ℓ+1 ((mq + 1) θ1) dθ1 = 0.

Now, note that (37) is not considered for an m such that mq = mq+1 = 0, which because of the
colex order used in the enumeration of mr, correspond to those such that r ≤ rq,k, where rq,k is
the number of nonnegative tuples of size q − 1 that sum up to k, as defined in the statement of
Lemma B.6. In addition, for those mr such that r ≤ rq,k, we can inspect the symmetries of the
associated gk,r. Consider the hyperspherical coordinates in (3), such that,

cos θk =
xk+1√

x21 + · · ·+ x2k+1

, and sin θk =

√
x21 + · · ·+ x2k
x21 + · · ·+ x2k+1

,

and from the definition of gk,r(x),

gk,r(x) =
√
Bmr ζmr (x1, x2)

q−1∏
j=1

(√
x21 + · · ·+ x2q−j+1

x21 + · · ·+ x2q−j+2

)|mj+1
r |

C
λj
mj

 xq−j+2√
x21 + · · ·+ x2q−j+2

 .

Note that Gegenbauer polynomials, Cα
n , fulfill Cα

n (−x) = (−1)nCα
n (x). Therefore, for any r whose

associated mr is such that there is a 1 ≤ j ≤ q − 1 where mj is odd,
gk,r(x1, . . . , xj−1,−xj , xj+1, . . . , xq+1) = −gk,r(x1, . . . , xj−1, xj , xj+1, . . . , xq+1), and
ek,r,2ℓ+1 = 0 following a similar argument as in the proof of part (b).

Lemma B.7. Let q ≥ 1, k ≥ 1, 1 ≤ r ≤ dq,k, m ≥ 2. Let A :=
{
(α1, . . . , αn) :

(
0 ≤ α1 ≤ α2 ≤

. . . ≤ αn ≤ m
)
∧
(
αi ̸= 1, 1 ≤ i ≤ n

)
∧
(
∃i : αi /∈ {0, 2}, 1 ≤ i ≤ n

)
∧
(∑n

i=1 αi = m
)}

, and for each

α ∈ A, let tα,j :=
∑n

i=1 1{αi=j}, for 1 ≤ j ≤ m, cα :=
∑m

j=1 tα,j, and Cα :=
m!∏m

j=1 tα,j !
∏n

i=1 αi!
.

Let ek,r,ℓ := E
[
gℓk,r(X1)

]
. Then, under H0 and as n→ ∞:

(i) If m is even,

E

[(
n−1/2

n∑
i=1

gk,r(Xi)

)m]
∼ m!

(m/2)! 2m/2
+ n−1Rm,k,r, (38)

where Rm,k,r :=
∑

α∈A n
cα−m/2+1Cα

∏n
i=1 ek,r,αi

= O(1).

(ii) If m is odd:

(a) For k even, r ≤ rq,k with rq,k :=
(
k+q−2
q−2

)
, and mr is such that ∀j ≤ q − 1 : mj is even

E

[(
n−1/2

n∑
i=1

gk,r(Xi)

)m]
∼ n−1/2

∑
α∈A

cα=⌊m/2⌋

Cα

n∏
i=1

ek,r,αi
+ n−3/2Sm,k,r, (39)

where Sm,k,r :=
∑

α∈A
cα<⌊m/2⌋

ncα−(m−3)/2Cα
∏n

i=1 ek,r,αi
= O(1).

(b) Otherwise, i.e., if k is odd, or r > rq,k, or mr is such that ∃j ≤ q − 1 : mj is odd,

E

[(
n−1/2

n∑
i=1

gk,r(Xi)

)m]
= 0. (40)
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In addition, under H0, for m even, there exists an N(≥ 1) independent of k and r such that, for all
n ≥ N and all k, r,

E

[(
n−1/2

n∑
i=1

gk,r(Xi)

)m]
≤ m!

(m/2)! 2m/2−1
+ 2n−1Rm,k,r.

Remark B.1. When q = 1, by Lemma B.6, for m even, ek,r,αi
is indeed independent of r and k, so

it is Rm,k,r =: Rm. In addition, for odd values of m, (39) also simplifies to zero.

Proof of Lemma B.7. By the multinomial theorem, and the independence of the sample,

E

[(
n−1/2

n∑
i=1

gk,r(Xi)

)m]
= n−m/2

∑
α∈S

(
m

α1, α2, . . . , αn

)
E
[
gα1
k,r(X1) · · · gαn

k,r(Xn)
]

= n−m/2
∑
α∈S

(
m

α1, α2, . . . , αn

) n∏
i=1

E
[
gαi
k,r(Xi)

]
, (41)

where the sum is taken over all tuples α := (α1, . . . , αn) of nonnegative integers whose sum is m,
that is, S := {(α1, . . . , αn) : (αi ≥ 0, 1 ≤ i ≤ n)∧(

∑n
i=1 αi = m)}. Since for a given tuple α, each of

its permutations yields the same results for the expectation, we group those elements, and we take
the sum over the set S≤ = {α ∈ S : 0 ≤ α1 ≤ α2 ≤ . . . ≤ αn ≤ m}. By setting tα,j :=

∑n
i=1 1{αi=j},

j = 1, . . . ,m, to be the number of exponents αi equal to j for a given α, we have

(41) = n−m/2
∑

α∈S≤

(
n

tα,0, . . . , tα,m

)(
m

α1, α2, . . . , αn

) n∏
i=1

ek,r,αi

= n−m/2
∑

α∈S≤
1

(
n

tα,0, . . . , tα,m

)(
m

α1, α2, . . . , αn

) n∏
i=1

ek,r,αi
, (42)

where in the second equality we used Lemma B.6, part (i) for q = 1 and (ii)(a) for q ≥ 2, and
S≤
1 := {α ∈ S≤ : αi ̸= 1, 1 ≤ i ≤ n}.

From (41) and using Lemma B.6 parts (i) for q = 1, and (ii)(b–c) for q ≥ 2, we immediately get
zero when one of the following happens: k is odd, r > rq,k, or mr is such that ∃j ≤ q − 1 : mj is
odd, which proves (40).

Then, the number of elements that belong to a certain configuration α is given by Nn,α :=(
n

tα,0,...,tα,m

)(
m

α1,α2,...,αn

)
. Note that we can write tα,0 = n− cα with cα :=

∑m
j=1 tα,j , and for α such

that αi ̸= 1 for all 1 ≤ i ≤ n, then 1 ≤ cα ≤ m/2 because elements are grouped at least in pairs.

Let Cα :=
m!∏m

j=1 tα,j !
∏n

i=1 αi!
. Then, using Stirling’s approximation, as n→ ∞,

n−m/2Nn,α ∼ Cα

√
n

n− cα

(
n

n− cα

)n (n− cα)
cα

ecα nm/2

∼ Cα
(n− cα)

cα

nm/2

∼ Cαn
cα−m/2, (43)

where ∼ denotes asymptotic equivalence, and substituting in

(42) =
∑

α∈S≤
1

n−m/2Nn,α

n∏
i=1

ek,r,αi

∼
∑

α∈S≤
1

ncα−m/2Cα

n∏
i=1

ek,r,αi
. (44)
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The only possible configuration such that cα = m/2 is α = (0, 2, . . . , 2), which is feasible when m is
even, but not when m is odd. Hence, for even m, and denoting S∗ := {α ∈ S≤

1 : ∃i : αi /∈ {0, 2}, 1 ≤
i ≤ n} we have

(44) = C(2,...,2)

n∏
j=1

E
[
g2k,r(Xj)

]
+
∑
α∈S∗

ncα−m/2Cα

n∏
i=1

ek,r,αi

=
m!

(m/2)! 2m/2
+
∑
α∈S∗

ncα−m/2Cα

n∏
i=1

ek,r,αi

=
m!

(m/2)! 2m/2
+ n−1

∑
α∈S∗

ncα−m/2+1Cα

n∏
i=1

ek,r,αi
,

where in the second equality we used Lemma B.6(a). However, for m odd,

(44) = n−1/2
∑

α∈S≤
1

cα=⌊m/2⌋

Cα

n∏
i=1

ek,r,αi
+ n−3/2

∑
α∈S≤

1
cα<⌊m/2⌋

ncα−(m−3)/2Cα

n∏
i=1

ek,r,αi
.

For every α ∈ S≤
1 such that cα < m/2, there are less than m/2 terms with αi > 0 in

∏n
i=1 ek,r,αi

,
and for the rest of terms, ek,r,0 = 1. Therefore,

∏n
i=1 ek,r,αi

= O(1).
To prove the second part, note that Stirling’s approximation used in (43) ensures that for all

ϵ > 0, there exists an Nα, independent of k and r, such that for all n ≥ Nα,∣∣∣∣∣n−m/2Nn,α

Cαncα−m/2
− 1

∣∣∣∣∣ < ϵ.

Letting ϵ = 1 and setting N := max{Nα : α ∈ A} completes the proof.

Remark B.2. Lemma B.7 gives an asymptotic expansion of the moments of the normed sum of a
spherical harmonic as n → ∞. An exact expression for the moments in the central limit theorem,
which applies to (38) was given in von Bahr (1965). However, this approach is not applied for
two reasons: (i) this expression does not improve the bounds used in Proposition 4.2, because the
dominant moment in the (m−2)th term of (45) is ek,r,m, and (ii) the terms in (45) are complicated
to compute as m increases, since they involve computing explicitly the integer partitions of all even
integers 0 < j < m. Nevertheless, it is interesting to see how our asymptotic approximation and the
exact moments are related. According to Theorem 1 in von Bahr (1965), for even values of m ≥ 2,

E

[(
n−1/2

n∑
i=1

gk,r(Xi)

)m]
=

m!

(m/2)! 2m/2
+

m−2∑
j=1

n−j/2

∫
R
xmdPj(−Φ)(x)

=
m!

(m/2)! 2m/2
+ n−1

∫
R
xmdP2(−Φ)(x)

+ n−2

∫
R
xmdP4(−Φ)(x) + · · ·

+ n2−m/2

∫
R
xmdPm−4(−Φ)(x)

+ n1−m/2

∫
R
xmdPm−2(−Φ)(x), (45)

where

dPj(−Φ)(x) =
∑∏

i

1

ki!

(
λli
ℓi!

)ki

(−1)sϕ(s)(x) dx,
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with the summation being over all the integer partitions of j, the values ki being defined such that∑
i iki = j, ℓi := i + 2, s :=

∑
i kiℓi, λℓ denotes the ℓth cumulant of gk,r(X), and ϕ(s) is the sth

derivative of the pdf of a standard normal distribution. The sum contains only integer powers of n
due to the symmetry of Pj(−Φ).

For concreteness, let us investigate the case m = 4,

E

(n−1/2
n∑

i=1

gk,r(Xi)

)4
 = 3 + n−1(ek,r,4 − 3). (46)

Following the proof of Lemma B.7, we can compute explicitly the moments, which coincide with (46).
Applying Stirling’s approximation to Nn,α, we end up with the approximation of Lemma B.7,

E

(n−1/2
n∑

i=1

gk,r(Xi)

)4
 ∼ 3 + n−1 ek,r,4. (47)

Thus, the difference between (46) and (47) is O(n−1).
The conclusion is analogous with m = 6,

E

(n−1/2
n∑

i=1

gk,r(Xi)

)6
 = 15 + n−1

(
15 (ek,r,4 − 3) + 10e2k,r,3

)
+ n−2

(
ek,r,6 − 15ek,r,4 − 10e2k,r,3 + 30

)
∼ 15 + n−1

(
15 ek,r,4 + 10 e2k,r,3

)
+ n−2 ek,r,6.

B.3 Lemmas of Section 5

Lemma B.9 is used to prove the consistency against fixed alternatives. Analogously to the null
asymptotic results, the asymptotic results under local alternatives depend on the normal limit
given in Lemma B.10, which, in turn, needs Lemma B.8. For rotationally symmetric alternatives,
Lemma B.11 is also required.

Lemma B.8. Let q ≥ 1, k ≥ 1, gk : Sq → Rdq,k be as defined in Lemma B.2, and X ∼ hn for n ≥ 1,
with hn as defined in (14). Assume the series

∑∞
k=1 h

′
kgk(x) converges uniformly in Sq. Then,

Ehn [gk(X)] = n−1/2hk

Ehn

[
gk(X)gℓ(X)′

]
= δkℓIdq,k,dq,ℓ + n−1/2Ak,ℓ(h),

where Ak,ℓ(h) :=
∑k+ℓ

m=1

∫
Sq h

′
mgm(x)gk(x)gℓ(x)

′ dνq(x).

Proof of Lemma B.8. By straightforward computation, we obtain

Ehn [gk(X)] =

∫
Sq
gk(x)hn(x) dσq(x)

=

∫
Sq
gk(x)

{
1 + n−1/2

∞∑
k=1

h′
kgk(x)

}
dνq(x)

= n−1/2

∫
Sq
gk(x)

∞∑
ℓ=1

h′
ℓgℓ(x) dνq(x)

= n−1/2
∞∑
ℓ=1

∫
Sq
gk(x)gℓ(x)

′ dνq(x)hℓ
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= n−1/2

∫
Sq
gk(x)gk(x)

′ dνq(x)hk

= n−1/2hk,

and

Ehn

[
gk(X)gℓ(X)′

]
=

∫
Sq
gk(x)gℓ(x)

′hn(x) dσq(x)

=

∫
Sq
gk(x)gℓ(x)

′ dνq(x)

+ n−1/2

∫
Sq
gk(x)gℓ(x)

′
∞∑

m=1

h′
mgm(x) dνq(x)

= δkℓIdq,k,dq,ℓ + n−1/2
∞∑

m=1

∫
Sq
h′
mgm(x)gk(x)gℓ(x)

′ dνq(x)

= δkℓIdq,k,dq,ℓ + n−1/2Ak,ℓ(h),

where Ak,ℓ(h) :=
∑k+ℓ

m=1

∫
Sq h

′
mgm(x)gk(x)gℓ(x)

′ dνq(x) and the sum is truncated since spherical
harmonics of degree m > k+ℓ are orthogonal to polynomials x 7→ gk,r(x)gℓ,s(x) of lower degree.

Lemma B.9. Let q ≥ 1, k ≥ 1, 1 ≤ r ≤ dq,k, and Tn,k,r := n−1
∑n

i=1 gk,r(Xi). Then, under H and
as n→ ∞, with hk,r denoting the rth element of hk, the following statements hold:

(i) If hk,r < 0,
√
nTn,k,r

P→ −∞.

(ii) If hk,r = 0,
√
nTn,k,r ⇝ N (0, σ2k,r), with σ2k,r := 1 + (Ak,k(h))r,r and Ak,k(h) given in

Lemma B.8.

(iii) If hk,r > 0,
√
nTn,k,r

P→ +∞.

Proof of Lemma B.9. Analogous to Lemma B.8, since the series
∑∞

k=1 h
′
kgk(x) is assumed to

converge uniformly in Sq, we obtain

EH [gk(X1)] = hk

EH

[
gk(X1)gℓ(X1)

′] = δk,ℓIdq,kdq,ℓ +Ak,ℓ(h).

In case (ii), the result is immediate by CLT. In cases (i) and (iii), we can write
√
nTn,k,r =

√
n (Tn,k,r − hk,r) +

√
nhk,r =: An,k,r +Bn,k,r

Then, An,k,r ⇝ N (0, σ2k,r) and An,k,r = OP(1). Note also that Bn,k,r → sgn(hk,r) ·∞. Thus, the
result is proven.

Lemma B.10. Let q ≥ 1, K ≥ 1, h = (h′
1, . . . ,h

′
K)′, gk : Sq → Rdq,k for k ≤ K and g : Sq → RD

be as defined in Lemma B.2. Then, under hn and as n→ ∞,

n−1/2
n∑

i=1

g(Xi)⇝ ND(h, ID).

Proof of Lemma B.10. Let Zi := (g1(Xi)
′, . . . ,gK(Xi)

′)′, Tn := n−1
∑n

i=1 Zi, and D =∑K
k=1 dq,k.
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We first prove that
√
n (Tn − Ehn [Tn]) ⇝ ND(0, ID), which by the Cramér–Wold theorem is

equivalent to prove that
√
n
(
c′Tn − Ehn

[
c′Tn

])
⇝ N (0, 1), for every c ∈ SD−1. (48)

We have that

√
n
(
c′Tn − Ehn

[
c′Tn

])
= n−1/2

(
n∑

i=1

c′Zi − Ehn

[
n∑

i=1

c′Zi

])
=:

n∑
i=1

Xn,i

and

s2n := Varhn

[
n∑

i=1

Xn,i

]
= n−1Varhn

[
n∑

i=1

c′Zi

]
= c′Varhn [Z1] c

= c′diag
(
Idq,1 , . . . , Idq,K

)
c+O(n−1/2)

= 1 +O(n−1/2),

due to Zi being iid and Lemma B.8. Lyapunov’s condition for δ = 1,

lim
n→∞

1

s3n

n∑
i=1

Ehn

[
|Xn,i|3

]
≤ 8D3/2C3

n1/2s3n
→ 0,

holds since

|Xn,i| =
1√
n

∣∣c′Zi − Ehn

[
c′Zi

]∣∣ ≤ 1√
n

(∣∣c′Zi

∣∣+ ∣∣Ehn

[
c′Zi

]∣∣)
≤ 1√

n

(
∥c∥ ∥Zi∥+ Ehn

[∣∣c′Zi

∣∣]) ≤ 1√
n
(∥c∥ ∥Zi∥+ Ehn [∥c∥ ∥Zi∥])

=
1√
n
(∥Zi∥+ Ehn [∥Zi∥]) ≤ 2

√
DC√
n
,

where C := max1≤k≤K max1≤r≤dq,k supx∈Sq |gk,r(x)| is well-defined because gk,r : Sq → R is a
continuous function defined on the compact set Sq, and, thus, it attains its maximum. Therefore,
by Lyapunov CLT, (48) is proved.

Second, we obtain the limit distribution of
√
nTn =

√
n (Tn − Ehn [Tn]) +

√
nEhn [Tn] =: Vn +Wn.

By (48), Vn ⇝ N (0, 1), and by Lemma B.8, Wn = (h′
1, . . . ,h

′
K)′, thus

√
nTn ⇝ ND(h, ID).

Lemma B.11. Let q ≥ 1, k ≥ 1, and gk : Sq → Rdq,k be as defined in Lemma B.2. Then,
under P

(n)
κn,f

,

E [gk(X)] =
1

hq,k(1)
E
[
C

(q−1)/2
k (X′µ)

]
gk(µ).

Proof of Lemma B.11. The result follows from applying the Funk-Hecke Theorem,

E [gk,r(X)] = cq,κn,f

∫
Sq
gk,r(x)f(κnx

′µ) dσq(x)

= cq,κn,f
ωq−1

hq,k(1)
gk,r(µ)

∫ 1

−1
C

(q−1)/2
k (s)f(κns)(1− s2)q/2−1 ds

=
1

hq,k(1)
E
[
C

(q−1)/2
k (X′µ)

]
gk,r(µ).
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C Additional simulation results

C.1 Power under fixed alternatives

Sections 8.2 and 8.3 show power simulations of the proposed m-points tests and their quasi-rotation-
invariant versions under the fixed alternative scenarios (∗), (◦), and (+).

In Section 8.2, the figures show the difference between the empirical power attained by an
m > 2 test compared to the corresponding Sobolev test (m = 2). Figures 5–7 show the empirical
rejection proportions (empirical power) in absolute terms of m-points tests based on Vm,w,10, with
the parameters specified in Section 8.2. In particular, the figures correspond to results shown in
Figures 1–3, respectively.

In Section 8.3, only summarized results of the experiment are included. Figures 8–10 display
the empirical power gains of quasi-rotation-invariant V -tests, pHMP,R

m,w,10 with R = 50, relative to
Sobolev tests (m = 2) under the same simulation setting as in Section 8.2. Figures 11–13 show the
corresponding empirical power.
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Figure 5: Empirical rejection proportion curves under scenario (∗) as a function of concentration κ, each
row corresponding to a different number of mixture components, N ∈ {2, 3, 4, 5}. Curves display the power
of m-points V -tests and the corresponding Sobolev test (m = 2). Tests are based on Vm,w,10, m ∈ {3, 4, 5, 6}
with weights indicated by columns, and n = 100.
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Figure 6: Empirical rejection proportion curves under scenario (◦) as a function of concentration κ, each
row corresponding to a different parameter value θ ∈ {π/12, π/4, 5π/12}. The same description of Figure 5
applies.
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Figure 7: Empirical rejection proportion curves under scenario (+) as a function of concentration κ. The
same description of Figure 5 applies.

C.2 Asymptotic distribution under rotated local alternatives

Section 5.2 presents the asymptotic distribution of m-points U - and V -statistics under local alterna-
tives. As noted in Remark 5.1, the asymptotic distribution for m = 2 is invariant under rotations of
the alternative distribution. However, for m > 2, this invariance is not guaranteed. In this section,
we present several numerical experiments illustrating the asymptotic distribution for each dimension
q ∈ {1, 2} under alternatives of the form (15), including multiple rotated versions of each alternative.

We explore two rotationally symmetric local alternatives, with a base pdf given by:

(i) (vMF ) the vMF distribution, with pdf fµ,κ defined in (∨).

(ii) (Watson) the Watson distribution, given by fW,µ,κ : Sq → R, such that x 7→ cq,κe
κ(x′µ)2 , where

cq,κ is the corresponding normalizing constant.
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Figure 8: Empirical rejection proportion difference curves under scenario (∗) as a function of concentration
κ, each row corresponding to a different number of mixture components, N ∈ {2, 3, 4, 5}. Curves compare
m-points V -tests against the baseline Sobolev test (m = 2). Tests are the quasi-rotation-invariant pHMP,50

m,w,10

V -tests, m ∈ {3, 4, 5, 6} with weights indicated by columns, and n = 100.
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Figure 9: Empirical rejection proportion difference curves under scenario (◦) as a function of concentration κ,
each row corresponding to a different parameter value θ ∈ {π/12, π/4, 5π/12}. The same description of
Figure 8 applies.

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CvM

κ

E
m

pi
ric

al
 r

ej
ec

tio
n 

di
ffe

re
nc

e

m = 3
m = 4
m = 5
m = 6

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AD

κ

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

S(0.01)

κ

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

S(10)

κ

Figure 10: Empirical rejection proportion difference curves under scenario (+) as a function of concentra-
tion κ. The same description of Figure 8 applies.
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Figure 11: Empirical rejection proportion curves under scenario (∗) as a function of concentration κ, each
row corresponding to a different number of mixture components, N ∈ {2, 3, 4, 5}. Curves display the power of
m-points V -tests and the corresponding Sobolev test (m = 2). Tests are the quasi-rotation-invariant pHMP,50

m,w,10

V -tests, m ∈ {3, 4, 5, 6} with weights indicated by columns, and n = 100.
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Figure 12: Empirical rejection proportion curves under scenario (◦) as a function of concentration κ, each
row corresponding to a different parameter value θ ∈ {π/12, π/4, 5π/12}. The same description of Figure 11
applies.

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CvM

κ

E
m

pi
ric

al
 r

ej
ec

tio
n 

pr
op

or
tio

n

Sobolev
m = 3
m = 4
m = 5
m = 6

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AD

κ

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

S(0.01)

κ

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

S(10)

κ

Figure 13: Empirical rejection proportion curves under scenario (+) as a function of concentration κ. The
same description of Figure 11 applies.
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Note that, due to rotational symmetry, rotating any of these densities with a location parameter µ
results in the same functional form with a different location parameter µ′.

For each alternative scenario described in (i) and (ii), and for dimensions q ∈ {1, 2}, we consider
concentration κ = 6 and the following set of location parameters:

(a) For q = 1, µ = (cos θ, sin θ)′ with

(i) θ ∈ {kπ/4 : k = 0, 1, . . . , 7} for vMF, and

(ii) θ ∈ {kπ/8 : k = 0, 1, . . . , 7} for Watson.

(b) For q = 2, µ = (cos θ, sin θ cosϕ, sin θ sinϕ)′ with

(i) (θ, ϕ) ∈ {(0, 0), (π, 0)} ∪ ({π/4, π/2, 3π/4} × {−π,−π/3, π/3}) for vMF, and

(ii) (θ, ϕ) ∈ {(0, 0), (π/8, 0), (π/8,−π)} ∪ ({π/4, 3π/8, π/2} × {−π,−π/3, π/3}) for Watson.

All considered locations are illustrated in Figure 14. For each statistic, Um,w,10 and Vm,w,10, with
m ∈ {2, 3, 4, 5, 6} and weights presented in Table 1, we display the histograms of the asymptotic
distributions corresponding to each location parameter µ, with each distribution shown in a different
color. For reference, the null asymptotic distribution is also included. To compute the asymptotic
distribution, the pdf coefficients hk were computed, and 105 samples of {Zk,r}

Kmax,dq,k
k=1,r=1 , with Kmax =

10, were generated according to Proposition 5.2.

(a) von Mises–Fisher (b) Watson

Figure 14: Location parameters µ ∈ Sq, q ∈ {1, 2}, considered in Figures 15–22.

The resulting histograms under scenario (i) are displayed in Figures 15–16 for q = 1, correspond-
ing to V - and U -statistics, respectively, and in Figures 19–20 for q = 2. Under scenario (ii), the
histograms are shown in Figures 17–18 (q = 1) and Figures 21–22 (q = 2).

For each set of histograms corresponding to a specific statistic and scenario, we assess the effect
of rotation by performing the k-sample Anderson–Darling test on the asymptotic distributions ob-
tained for different location parameters µ. Specifically, we draw a subsample of size 103 from each
asymptotic distribution (one per µ) and use these subsamples to conduct the test. This allows us to
evaluate whether the asymptotic distribution varies with the rotation of the alternative. The results
are interesting: for odd values of m, the asymptotic distribution clearly depends on the choice of
the location parameter µ, for both U - and V -statistics. However, for even values of m, the behavior
of U - and V -statistics seems to differ. While for V -statistics the distribution exhibits consistent
invariance to µ, for U -statistics it varies significantly in certain scenarios and values of m, indicating
sensitivity to rotation even in the even-m case.
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Figure 15: Histograms of the asymptotic distribution of Vm,w,10 with m ∈ {2, 3, 4, 5, 6}, respectively for each
row, and w indicated by columns. The asymptotic distribution is shown under hn (q = 1) based on vMF with
µ indicated in (a)(i) and represented with varying colors. The p-value of the k-sample Anderson–Darling
(AD) test for the asymptotic distributions under hn is shown.
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Figure 16: Histograms of the asymptotic distribution of Um,w,10 under hn (q = 1) based on vMF with µ
indicated in (a)(i). The same description of Figure 15 applies.
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Figure 17: Histograms of the asymptotic distribution of Vm,w,10 under hn (q = 1) based on Watson with µ
indicated in (a)(ii). The same description of Figure 15 applies.
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Figure 18: Histograms of the asymptotic distribution of Um,w,10 under hn (q = 1) based on Watson with µ
indicated in (a)(ii). The same description of Figure 15 applies.
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Figure 19: Histograms of the asymptotic distribution of Vm,w,10 under hn (q = 2) based on vMF with µ
indicated in (b)(i). The same description of Figure 15 applies.
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Figure 20: Histograms of the asymptotic distribution of Um,w,10 under hn (q = 2) based on vMF with µ
indicated in (b)(i). The same description of Figure 15 applies.
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Figure 21: Histograms of the asymptotic distribution of Vm,w,10 under hn (q = 2) based on Watson with µ
indicated in (b)(ii). The same description of Figure 15 applies.
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Figure 22: Histograms of the asymptotic distribution of Um,w,10 under hn (q = 2) based on Watson with µ
indicated in (b)(ii). The same description of Figure 15 applies.
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